Consistency-based Self-supervised Learning for Temporal Anomaly Localization

Overview of the proposed framework.

Abstract

This work tackles Weakly Supervised Anomaly detection, in which a predictor is allowed to learn not only from normal examples but also from a few labeled anomalies made available during training. In particular, we deal with the localization of anomalous activities within the video stream: this is a very challenging scenario, as training examples come only with video-level annotations (and not frame-level). Several recent works have proposed various regularization terms to address it i.e. by enforcing sparsity and smoothness constraints over the weakly-learned frame-level anomaly scores. In this work, we get inspired by recent advances within the field of self-supervised learning and ask the model to yield the same scores for different augmentations of the same video sequence. We show that enforcing such an alignment improves the performance of the model on XD-Violence.

Publication
In European Conference on Computer Vision Workshops 2022
Aniello Panariello
Aniello Panariello
PhD Student in Artificial Intelligence

My research interests include Computer Vision and Self-supervised Learning.