
Accurate and Efficient Low-Rank
Model Merging in Core Space

Aniello Panariello1∗ Daniel Marczak2,3 ∗

Simone Magistri4 Angelo Porrello1 Bartłomiej Twardowski5,6
Andrew D. Bagdanov4 Simone Calderara1 Joost van de Weijer6

1AImageLab, University of Modena and Reggio Emilia, Italy
2Warsaw University of Technology, Poland 3IDEAS NCBR, Warsaw, Poland

4Media Integration and Communication Center (MICC), University of Florence, Italy
5IDEAS Research Institute, Warsaw, Poland

6Computer Vision Center, Universitat Autònoma de Barcelona, Spain

Abstract

In this paper, we address the challenges associated with merging low-rank adap-
tations of large neural networks. With the rise of parameter-efficient adaptation
techniques, such as Low-Rank Adaptation (LoRA), model fine-tuning has become
more accessible. While fine-tuning models with LoRA is highly efficient, existing
merging methods often sacrifice this efficiency by merging fully-sized weight ma-
trices. We propose the Core Space merging framework, which enables the merging
of LoRA-adapted models within a common alignment basis, thereby preserving the
efficiency of low-rank adaptation while substantially improving accuracy across
tasks. We further provide a formal proof that projection into Core Space ensures no
loss of information and provide a complexity analysis showing the efficiency gains.
Extensive empirical results demonstrate that Core Space significantly improves
existing merging techniques and achieves state-of-the-art results on both vision and
language tasks while utilizing a fraction of the computational resources. Codebase
is available at https://github.com/apanariello4/core-space-merging.

1 Introduction

In recent years, the size of neural networks has grown substantially [2, 4, 9, 13, 51], increasing
the economic and computational costs associated with training from scratch and fine-tuning. As a
consequence, efficient low-rank adaptation techniques have emerged, which enable broader access
to these powerful models [15, 16, 21, 26, 56]. Techniques like Low-Rank Adaptation (LoRA) [16]
reparameterize model updates to significantly reduce the number of trainable parameters. This makes
it feasible for a broader range of users to fine-tune large architectures on their specific tasks.

At the same time, the advent of model hubs such as Hugging Face [17] has simplified the diffusion
of pre-trained and fine-tuned models, opening new opportunities for collaborative and multi-task
learning by allowing users to acquire and build upon existing models easily. In this context, model
merging, which aims to combine multiple specialized models into one capable of handling various
tasks, has been gaining interest [32, 37, 48, 27, 39]. However, most prior works focus on fully
fine-tuned models [6, 12, 18, 28, 34, 46, 50, 38]. While this is practical for smaller architectures, fully
fine-tuned versions of larger models are rare due to their high memory and compute costs. As model
sizes grow, new strategies are needed to efficiently merge fine-tuned adaptations without incurring
the prohibitive overhead of merging full models.

∗Equal Contribution. aniello.panariello@unimore.it, daniel.marczak.dokt@pw.edu.pl

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/apanariello4/core-space-merging

In [42], the authors observe that directly applying existing merging techniques [18, 50, 55]
to updates derived by multiplying low-rank components leads to suboptimal results. To ad-
dress this, they introduce an alignment space that improves update compatibility. However,
merging in this alignment space requires abandoning the low-rank representation and perform-
ing a singular value decomposition (SVD) on the horizontally concatenated full space up-
dates. This suffers from two significant drawbacks: it eliminates the efficiency benefits of
low-rank adaptation, and becomes prohibitively expensive as the base model size increases.

101 102 103

Merging Time (s)

90

91

92

93

94

95

96

A
cc

ur
ac

y
(%

)

280x speed-up+1.6% acc

Merging method:
TIES
DARE-TIES
TSV

Space:
Full
KnOTS
Core

performance
costBest

Figure 1: Merging in full space is fast but subopti-
mal (bottom center). Merging in KnOTS space or
using strong merging methods (e.g., TSV) improves
performance but increases cost by orders of magni-
tude (right). Core Space merging is effective and
efficient (top left). Results on Llama 3 8B.

To overcome such limitations, we propose
Core Space, a novel parameter-efficient sub-
space that supports arbitrary merging tech-
niques while retaining the benefits of low-rank
adaptation. Core Space provides a common
alignment basis for all task-specific low-rank
components without loss of information. No-
tably, its dimensionality depends solely on the
number of tasks and the LoRA rank, remaining
tractable regardless of the base model size. Be-
yond its advantages in terms of efficiency, merg-
ing in Core Space also consistently improves
the performance of existing merging strate-
gies. We evaluate three setups: (1) first mul-
tiplying low-rank matrices and then applying
merging techniques, (2) merging in the KnOTS
space [42], and (3) merging in our proposed
Core Space. Across both vision and language
domains, merging in Core Space achieves the
best results – demonstrated on ViT-B/32, ViT-
L/14, and Llama 3 8B backbones – highlighting
that our approach not only preserves parameter
efficiency but also leads to improved general-
ization and task performance (see Fig. 1).

The main contributions of this paper are the following:

• We introduce Core Space Merging, a framework to merge LoRA-adapted models in a
shared low-rank basis, avoiding costly full space operations, while improving accuracy. Our
approach can be easily integrated with existing merging methods.

• We prove that projection into Core Space ensures no loss of information, and provide a
complexity analysis demonstrating the efficiency gain of merging in the proposed space.

• We present an extensive empirical evaluation showing state-of-the-art results achieved at a
fraction of the computational cost of competing methods by merging in Core Space for
vision and language tasks, including experiments on ViT-B/32, ViT-L/14, and Llama 3 8B.

2 Related Work

Parameter-efficient fine-tuning (PEFT). Pre-trained models serve as a starting point for training
experts specialized in various downstream tasks [10, 36]. As the size of frontier models grows, the cost
of fully fine-tuning such models increases accordingly. Therefore, several parameter-efficient fine-
tuning (PEFT), updating a small fraction of parameters, have been proposed, including adapters [15],
prefix tuning [25], and prompt tuning [24]. Nowadays, LoRA [16] and its variants [21, 26], which
rely on low-rank updates, have emerged as one of the most popular PEFT techniques.

Model merging. The abundance of available expert models inspired the fundamental question
behind model merging [32]: how can we integrate knowledge from multiple expert models into a
single multi-task model? Task Arithmetic [18] proposed to construct task vectors (i.e., the parameter
difference between expert and base model) and aggregate them via scaled addition, creating a multi-
task expert. Since a significant performance gap between the single-task and the merged models

2

remains, many approaches were proposed to address this issue [1, 19, 29, 31, 43, 52, 54, 35]. TIES-
Merging [50] focuses on reducing sign conflicts between the parameters of expert models. Model
Breadcrumbs [8] removes outliers from the task vectors, while Consensus Merging [46] eliminates
catastrophic and selfish weights. Most recent methods, like TSV [12] and Iso-C [28], rely on singular
value decomposition (SVD) of weight update matrices to reduce task interference when merging
models. However, most methods are designed for merging fully fine-tuned models.

Merging LoRA-adapted models. Methods designed to merge fully fine-tuned models do not
necessarily transfer well to merging LoRA-adapted models [44]. The authors of [44] proposed and
improved a method to merge LoRAs. However, their approach relies on altering the fine-tuning
procedure. KnOTS [42] proposes to merge LoRA updates in the shared subspace, achieving a
significant improvement. However, KnOTS performs SVD on the concatenation of full-size matrices
instead of leveraging their decomposed update representations, making it costly, especially for large
weight matrices. Therefore, finding a method that effectively and efficiently merges LoRA-adapted
models remains an open challenge.

3 Preliminaries

LoRA fine-tuning. Low-Rank Adaptation (LoRA) [16] is a technique for efficient fine-tuning of
large pre-trained models. Instead of updating the full model weights W ∈ Rm×n, LoRA introduces
two learnable matrices A ∈ Rr×n and B ∈ Rm×r (where r � min(m,n)), and modifies the weight
update as W = W0 +∆W = W0 +BA, where W0 is the original weight matrix. This significantly
reduces the number of parameters that need to be updated during fine-tuning.

Model merging. Given a set of T parameters {W1, . . . ,WT }, for a common architecture trained on
T different tasks, a basic model merging approach calculates task vectors ∆Wi = Wi −W0, and
computes a weighted sum Wmerged = W0+α

∑T
i=1 ∆Wi. When dealing with LoRA-adapted models

we obtain a common W0 and a set of decomposed, low-rank updates {∆Wi = BiAi}Ti=1. However,
merging such weight matrices obtained from LoRA leads to suboptimal performance as shown in
[42], since LoRA-adapted models are less aligned w.r.t. to their fully fine-tuned counterparts.

4 The Core Space Merging Framework

In this section, we introduce Core Space Merging (see Fig. 2), a framework designed to identify
an effective and efficient subspace – referred to as the Core Space – in which model merging for
LoRA-adapted models can be performed while remaining in the low-rank regime. Core Space is
designed to be reversible – it ensures no loss of information when projecting into Core Space and
back to the original space – while being as compact as possible. Compactness allows for the use of
state-of-the-art merging methods relying on Singular Value Decomposition (SVD) of weight matrices,
which are highly costly to perform in the original space for large models.

4.1 Model Merging in Core Space

Let A(t) ∈ Rr×n and B(t) ∈ Rm×r denote the low-rank matrices for task t, derived from a shared
pre-trained base model W0. Each task update ∆W (t) = B(t)A(t) can be reconstructed from the
reduced SVD2 of the matrices:

A(t) = U
(t)
A Σ

(t)
A V

(t)>
A , B(t) = U

(t)
B Σ

(t)
B V

(t)>
B , ∆W (t) = U

(t)
B Σ

(t)
B V

(t)>
B U

(t)
A Σ

(t)
A V

(t)>
A . (1)

The shapes of the matrices in the decomposition are: U
(t)
A ∈ Rr×r, Σ(t)

A ∈ Rr×r, V (t)
A ∈ Rn×r,

U
(t)
B ∈ Rm×r, Σ(t)

B ∈ Rr×r, and V
(t)
B ∈ Rr×r.

Definition 1 (Core Matrix). Given the SVD of low-rank matrices A(t) ∈ Rr×n and B(t) ∈ Rm×r,
the core matrix M (t) ∈ Rr×r is defined as:

M (t) := Σ
(t)
B V

(t)>
B U

(t)
A Σ

(t)
A . (2)

2We use the reduced SVD throughout, as it offers a suitable alternative for low-rank matrices where r � m,n.

3

Full Space Merging

Task 1

1

Task T

Merging

Task 2

2

Task 1

1

Task TTask 2

2

SVD

21

Merging

KnOTS Merging Core Space Merging

Vertical Concat

Horizontal Concat

SVD

SVD

SVD

SVD

Merging

Align Core Matrix

SVD Singular Value
 Decomposition

1

Merged
Core Matrices

Core
Matrix

xT

Ta
sk

 Horiz. Concat

Figure 2: Full Space Merging (left) firstly reconstructs full space matrices ∆W (t) = B(t)A(t), and
then performs merging in the full space to obtain ∆W . KnOTS Merging concatenates the ∆W (t)

matrices, and performs a costly SVD on this high-dimensional matrix. Then, the V (t) matrices are
merged and used to obtain the final ∆W . The proposed Core Space Merging (right) performs SVD
on a concatenation of low-dimensional A(t) and B(t) matrices to obtain reference bases. Afterwards,
it performs SVD on the individual A(t) and B(t) matrices and calculates the core matrices. It then
performs merging in the Core Space and reconstructs to obtain the final ∆W .

Intuitively, the core matrix M (t) is a compact representation summarizing the directional transforma-
tion applied by the low-rank update of task t, expressed in the singular spaces of A(t) and B(t). We
confirm this intuition in Sec. 5.2.

Under the hypothesis that all tasks share approximately the same common bases (UB , VA) such that
UB ≈ U

(t)
B , VA ≈ V

(t)
A , ∀t ∈ {1, . . . , T}, the following holds:

∆W =

T∑
t=1

∆W (t) ≈ UB

(
T∑

t=1

M (t)

)
V >
A , (3)

suggesting that, under aligned bases, the sum of low-rank updates (i.e., Task Arithmetic [18]) can
be approximated by merging the corresponding core matrices – reducing the merging problem to
operations in a much smaller r × r space. However, task-specific bases are misaligned in practice,
making it impossible to directly compare or merge task-specific core matrices as in Eq. (3). Therefore,
we aim to find a shared basis that can represent all tasks without loss of information. Intuitively, such
a shared basis should span the subspace formed by the union of the individual task subspaces.

Definition 2 (Reference Bases). Given a collection of low-rank matrices {A(t), B(t)}Tt=1, we define
as reference bases the orthonormal matrices (U ref

B , V ref
A) obtained by performing SVD over the

vertically stacked A(t) and horizontally stacked B(t) low-rank matrices across tasks.

[B(1); · · · ;B(T)] = U ref
B ΣBV

>
B ;

A
(1)

...
A(T)

 = UAΣA

(
V ref
A

)>
. (4)

These bases span a shared latent subspace into which all task-specific updates are projected.

For each task t, we express the task-specific bases (U (t)
B , V

(t)
A) in the coordinate system defined by

the reference bases (U ref
B , V ref

A) by solving the following least-squares problems:

R
(t)
B = argmin

R∈RT ·r×r

∥∥∥U ref
B R− U

(t)
B

∥∥∥2
F
, Q

(t)
A = argmin

Q∈RT ·r×r

∥∥∥V ref
A Q− V

(t)
A

∥∥∥2
F
, (5)

where V
(t)
A ∈ Rn×r and V ref

A ∈ Rn×T ·r (and similarly for U (t)
B and U ref

B). These problems are
convex, and since U ref

B and V ref
A are orthonormal, setting the gradients to zero yields the global

4

minimizers (see Sec. A.1 for the full derivation):

R
(t)
B = U ref

B

>
U

(t)
B , Q

(t)
A = V ref

A

>
V

(t)
A (6)

The aligned core matrix M̃ (t) for task t is then computed as:

M̃ (t) = R
(t)
B M (t)Q

(t)
A

>
. (7)

Finally, we merge the set of aligned core matrices {M̃ (t)}Tt=1 using a function M, yielding Mmerged =

M({M̃ (t)}Tt=1), where M denotes any existing merging strategy. We then reconstruct the final
weight matrix from Mmerged by projecting it back to the full space using the reference bases:

∆W = U ref
B MmergedV

ref
A

>
. (8)

Core Space merging offers several advantages over merging in the full space:

• No loss of information – transformation to core space and back to full space is lossless (see
Sec. 4.2 for the proof of zero alignment error). Moreover, when the merging function is
linear (e.g., Task Arithmetic), the model merged in full space will be the same as the model
merged in core space M̃ (t) and then reconstructed using the reference bases.

• Efficiency – aligned core matrices M̃ (t) ∈ RT ·r×T ·r have considerably lower dimensionality
than full space matrices ∆W (t) ∈ Rm×n since T, r � m,n. Therefore, we can perform an
expensive merging technique in the subspace of reduced dimensionality for a fraction of the
total computational cost (see Sec. 4.3 for detailed complexity analysis).

• Efficacy – in Sec. 5.1 we show that merging in Core Space yields better performance than
merging in alternative spaces, when the merging function is non-linear. In Sec. 5.2, we shed
light on the reasons for Core Space superiority. Our approach is found to yield compact
representations of each task and improve alignment between subspaces of each task.

4.2 No Information Loss in Core Space Representation

For each task t, reconstructing from the aligned core matrix M̃ (t) exactly recovers the original
low-rank update, i.e.:

∆W (t) = U
(t)
B M (t)V

(t)
A

>
= U ref

B M̃(t)V ref
A

>
=
(
U ref
B R

(t)
B

)
M (t)

(
V ref
A Q

(t)
A

)>
. (9)

The outer expressions are given by construction (see Eqs. (1), (2) and (7)). The middle equality
holds if U (t)

B = U ref
B R

(t)
B and V

(t)
A = V ref

A Q
(t)
A or, equivalently, if the solutions of the least squares

problems (defined in Eq. (5)) incur zero alignment error. Indeed, we show that the reference bases
U ref
B and V ref

A , computed via the SVD of the stacked matrices B(t) and A(t) (see Eq. (4)), minimize
the total alignment error across all T tasks, achieving an error of exactly zero. To illustrate this,
we first analyze the alignment error for a single task t, explicitly focusing on U ref

B . Analogous
conclusions hold symmetrically for V ref

A . For clarity, in the following derivations, we assume that
T · r ≤ m and T · r ≤ n, so that the total LoRA rank does not exceed the maximum possible rank of
the target weight matrix. In Sec. A.4, we provide a more general formulation covering the case where
this assumption is violated and show that the same zero alignment error result continues to hold.

Lemma. Let U (t)
B ∈ Rm×r and U ref

B ∈ Rm×T ·r be matrices with orthonormal columns, and let
R

(t)
B = U ref

B

>
U

(t)
B ∈ RT ·r×r be the optimal solution minimizing the error of the least-square problem.

Then, the optimal alignment error is given by:

εU =
∥∥∥U ref

B R
(t)
B − U

(t)
B

∥∥∥2
F
= r −

∥∥∥∥U (t)
B

>
U ref
B

∥∥∥∥2
F

. (10)

The proof, provided in Sec. A.2, leverages the properties of Frobenius norm and the orthonormality of
U

(t)
B and U ref

B . To formally demonstrate that our chosen reference basis U ref
B minimizes the alignment

error across all T tasks (or equivalently maximize ||U (t)
B

>
U ref
B ||2F for each task t), we first formulate

5

Algorithm 1 Core Matrix Alignment and Merging

Require: Low-rank updates {(A(t), B(t))}Tt=1, merging function M(·).
1: Stack A(t) vertically, B(t) horizontally
2: Compute SVDs: stack(A(t)) = UAΣAV

ref>
A , stack(B(t)) = U ref

B ΣBV
>
B . reference bases

3: for t = 1 to T do
4: Compute: M̃ (t) = U ref

B B(t)A(t)V ref>
A . Eq. (6) and Eq. (7)

5: Merge aligned core matrices: Mmerged = M({M̃ (t)}Tt=1)
6: return ∆W = U ref

B MmergedV
ref>
A . reconstructed merged model

the following constrained optimization problem for a single task, and then extend it to the multi-task
scenario:

max
U∈S

∥∥∥∥U (t)
B

>
U

∥∥∥∥2
F

= max
U∈S

tr

(
U>U

(t)
B U

(t)
B

>
U

)
, S =

{
U ∈ Rm×Tr

∣∣ U>U = IT ·r
}
, (11)

where tr(·) denotes the trace operator. The optimization domain is restricted to the Stiefel manifold S
(i.e., the set of matrices with orthonormal columns). The following lemma characterizes the solution
to this optimization problem:
Lemma. A solution U∗ to the quadratic program in Eq. (11) is given by a basis whose columns
include the r eigenvectors corresponding to nonzero eigenvalues of B(t)B(t)> ∈ Rm×m or, equiv-
alently, by the r left singular vectors of the matrix B(t). Moreover, at the optimum, the objective
attains its maximum value r, resulting in zero alignment error in Eq. (10).

We refer the reader to Appendix A.3 for a detailed proof. Briefly, the result follows by applying
the method of Lagrange multipliers to augment the optimization objective with the Stiefel manifold
constraint and then enforcing stationarity by setting the gradient of the Lagrangian to zero.

Extension to multiple tasks. Achieving zero reconstruction error for a single model t does not
guarantee optimality for any other model t′ 6= t. Therefore, we aim to identify a reference basis U∗

that jointly optimizes Eq. (11) across all T models. We formulate this global problem as:

max
U∈ S

T∑
t=1

tr(U>U
(t)
B U

(t)
B

>
U) = max

U∈ S
tr(U>UBU

>
BU), (12)

where UB = [U
(1)
B U

(2)
B . . . U

(T)
B] denotes the horizontal concatenation of all U (t)

B matrices. The
equality in Eq. (12) follows directly from the linearity of the trace operator and the distributivity of
matrix multiplication concerning matrix addition: M>A1M +M>A2M = M>(A1 +A2)M .

By considerations analogous to the single task-case, a global solution U∗ is given by the top T · r left
singular vectors of the matrix B, obtained by vertically stacking each matrix B(t), i.e., U∗ = U ref

B .
This choice ensures zero alignment error simultaneously across all T tasks, consistent with the
procedure described in Sec. 4.1.

Exact merging via linear functions in Core Space. Thanks to the lossless reconstruction of each
task-specific update (see Eq. (9)), if the merging function M is linear (such as in Task-Arithmetic),
then merging in Core Space produces the same merged matrix as merging in full space. Specifically:

M({∆W (t)}Tt=1) = M({U ref
B M̃(t)V ref

A

>}Tt=1) = U ref
B M({M̃(t)}Tt=1)V

ref
A

>
. (13)

It is worth noting that Core Space merging is computationally efficient and does not increase time
complexity – even when task arithmetic is applied in Core Space – due to its lower dimensionality, as
we will show in the next section. Moreover, when the merging function is non-linear, we will show
in Sec. 5.1 that it can improve performance compared to standard merging strategies applied in the
full space at a fraction of the computational cost. For example, when dealing with Llama 3 8B, we
have a speedup of more than 600× with respect to KnOTS [42] for the Iso-C [28] method.

Practical Implementation. While we introduce the per-task SVDs of A(t) and B(t) for theoretical
clarity, in practice the core matrix can be computed more directly as M̃ (t) = U ref>

B B(t)A(t)V ref
A ,

6

0 1000 2000 3000 4000

n

102

105

108

1011

O
p

er
at

io
ns

(l
og

sc
al

e)

Varying n (T = 8, r = 16)

Iso-C + Full

Iso-C + KnOTS

Iso-C + Core

0 50 100

r

107

108

109

1010

Varying r (n = 768, T = 8)

10 20 30

T

108

109

1010

1011

Varying T (n = 768, r = 16)

Figure 3: Core Space merging is more efficient than the previous state-of-the-art KnOTS. The
cost is similar to full space merging, which results in much lower performance. We visualize the
number of operations performed to merge T rank r LoRA modules of final shape n× n.

without explicitly decomposing each LoRA matrix. This follows directly by substituting the defini-
tions of R(t)

B and Q
(t)
A from Eq. (6) into Eq. (7), and by recalling the definitions of B(t), A(t), and

M (t) (see Eqs. (1) and (2)). This yields identical results and is marginally more computationally
efficient. The decomposition of A(t) and B(t) helps formalize the projection process and support the
derivations in Sec. A, including orthogonality, rank preservation, and the zero-error reconstruction
proofs. For this reason, we retain the SVD-based formulation in the theoretical exposition. We report
in Algorithm 1 the algorithm for Core Space merging with this computationally optimized approach
and the illustration in Sec. D.1.

4.3 Computational Complexity Analysis

Table 1: O(·) time complexities. The cheap-
est method is highlighted in bold (T, r � n).

Space TA Iso-C TSV

Full n2Tr n3 n3T
KnOTS n3T 2 n3T 2 + n2Tr n3T 2 + T 3r2n
Core n2Tr n2Tr + T 3r3 n2Tr + T 4r3

We summarize the time complexities of TA, Iso-C,
and TSV merged in all three spaces (Full, KnOTS,
and our Core) in Tab. 1 and Fig. 3. Details on the
derivation of the complexities are in Appendix B. Our
approach exhibits a time complexity comparable to
that of Task Arithmetic in full space. Our method’s
additional terms are negligible unless the product T ·r
becomes significantly large. A key advantage of our
method lies in its scalability compared to KnOTS,
whose time complexity is super-cubic, driven by a factor that scales cubically with the weight matrix
size n. Finally, we emphasize the minimal additional overhead incurred when combining our method
with Iso-C or TSV in the core space; it introduces a cost substantially lower than its counterpart in
full space or KnOTS space.

5 Experimental Results

Experimental setup. We follow the experimental setup of KnOTS and use the LoRA checkpoints
provided by the authors [42]. For the vision experiments, we use two variants of CLIP [36] with
ViT-B/32 and ViT-L/14 [11] as vision encoders fine-tuned on a standard set of 8 tasks. We employ
Llama 3 8B [13] fine-tuned on 6 NLI tasks for the language experiments. All models are fine-tuned
with LoRA [16] with rank 16 applied on all matrices (keys, queries, values, and outputs) across all
attention layers. Following [42], we report normalized accuracy as a ratio of the accuracy of the
merged model on a given task to the accuracy of the model fine-tuned on this task. We also report
absolute accuracy for the joint-task setting (additional experimental details in Sec. D).

Baseline merging spaces. We compare our proposed Core Space with two alternative merging
spaces. Full Space operates in space of full reconstructed weight matrices ∆W (t) = B(t)A(t) ∈
Rm×n. KnOTS Space [42] operates in the space of the right singular vectors of the concatenated
reconstructed weight matrices {∆W (t)}Tt=1 ∈ Rm×nT .

Baseline merging methods. We evaluate each merging space using the following merging meth-
ods. Task Arithmetic (TA) [18] performs a scaled summation of each task matrix Wmerged =

7

Table 2: Normalized accuracies of merged models on NLI tasks for Llama 3 8B.

Method Space SNLI MNLI SICK QNLI RTE SCITAIL Avg (∆Acc) Time [s] Rel. Time
Abs. Accurcay 92.50 90.31 91.58 94.49 89.86 96.52 - - -

TA Full 93.57 95.28 87.96 68.71 100.0 96.73 90.38 (+0.00) 9 -

TIES
Full 95.17 96.19 84.18 74.18 100.0 96.78 91.08 (+0.00) 72 9
KnOTS 91.82 94.19 92.97 78.57 100.0 97.61 92.53 (+1.45) 3000 375
Core 92.07 93.51 93.63 83.72 99.19 97.66 93.30 (+2.22) 8 1

DARE-TIES
Full 94.76 96.8 78.39 72.08 98.39 96.20 89.44 (+0.00) 108 13
KnOTS 91.62 96.72 74.90 84.75 99.48 99.13 91.10 (+1.66) 3180 397
Core 92.10 93.58 93.70 83.68 99.19 97.66 93.32 (+3.88) 8 1

TSV
Full 95.38 95.12 88.83 76.80 101.61 97.56 92.55 (+0.00) 3360 280
KnOTS 92.53 95.83 82.77 77.01 100.0 97.08 90.87 (-1.68) 4800 400
Core 95.86 95.70 89.25 83.89 102.42 97.86 94.16 (+1.61) 12 1

Iso-C
Full 55.00 39.04 76.54 55.90 46.77 69.25 57.08 (+0.00) 540 67
KnOTS 85.28 52.86 89.43 54.90 75.00 77.73 72.53 (+15.45) 4860 607
Core 91.54 90.10 87.87 75.85 99.19 97.42 90.33 (+33.25) 8 1

W0 + α
∑T

i=1 ∆Wi. As this is a linear operation, the results of merging in each space are the
same (see Eq. (13) for Core and [42] for KnOTS). TIES [50] trims low-magnitude parameters and
averages parameters with dominating sign, while DARE [55] preprocesses task vectors by randomly
dropping a fraction of parameters and rescaling the remaining ones. TSV [12] concatenates low-rank
approximations of task matrices and orthogonalizes them across tasks. CART [6] calculates centered
task vectors as a difference of fine-tuned weights from the average of all fine-tuned weights and
performs task arithmetic on the low-rank approximation of these centered task vectors. Iso-C [28]
flattens the spectrum of singular values for a model merged with task arithmetic. As the spectrum
flattening can be performed on weights merged with any merging technique, we combine Iso with
other merging techniques, denoting it with +Iso-C.

5.1 Results

LLMs merging. We present Llama 3 8B results in natural language inference in Tab. 2. In line
with our complexity analysis, merging in Core Space is much more efficient than merging in Full or
KnOTS space, bringing up to 600× merging speed-up. Moreover, merging in Core Space improves
the performance of all tested merging methods. In particular, it elevates TSV to 94.16% average
normalized accuracy, achieving state-of-the-art results.

Per-task evaluation in vision setting. We present per-task vision results for ViT-B/32 in Tab. 3. We
observe that 8 out of 9 merging methods achieve their highest average accuracy when performed in our
proposed Core Space. The best combination – TSV + Iso-C merged in Core Space – achieves state-
of-the-art average normalized accuracy of 76.3%. It significantly outperforms the previously reported
SoTA of TIES in KnOTS space, achieving 68.0% [42]. Similar conclusions hold for experiments on
ViT-L/14 presented in Sec. E.1.

Heterogeneous ranks. While handling LoRA modules with heterogeneous ranks might seem
non-trivial, our method supports it seamlessly without modification. Even with different ranks,
the modules can be concatenated across tasks to form an aggregate basis spanning the combined
subspaces, after which projection and alignment are applied to each local task core matrix. Since
SVD makes no assumptions about input ranks, it yields valid orthonormal bases in all cases, enabling
our framework to merge variable-rank LoRA modules naturally. We evaluate this setting by assigning
rank 16 to half the tasks and rank 64 to the rest; the results reported in Sec. E.2 show that our method
still outperforms other approaches.

Additional PEFT methods Our method can also be applied to other PEFT methods, such as
VeRA [21]. In VeRA, ∆W = ΛbBΛdA, where A ∈ Rr×n, B ∈ Rm×r, Λb ∈ R1×m, and
Λd ∈ Rr×1. Unlike LoRA, in VeRA the A and B matrices are randomly chosen, frozen, and shared
across the network, while only the two scaling vectors Λ are learned for each layer. To adapt VeRA
to our Core Space merging, we absorb the scaling vectors into the matrices, i.e., B̃ = ΛbB and
Ã = ΛdA, and then treat Ã and B̃ as the LoRA A and B matrices. To confirm that our method
also works with VeRA, we report additional experiments in Sec. E.3, which show that our method
outperforms other baselines also in this setting.

8

Table 3: Normalized accuracies of merged models on the vision tasks with ViT-B/32.

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. accuracies 74.00 58.30 99.00 92.70 99.30 88.40 64.50 96.20 -

TA Full 81.97 73.72 48.97 42.24 53.12 71.50 97.46 41.25 63.78 (+0.00)

TIES
Full 82.37 72.72 49.91 36.62 57.16 69.38 96.92 44.56 63.70 (+0.00)

KnOTS 83.75 74.45 50.36 47.31 67.01 71.79 96.51 50.64 67.73 (+4.03)

Core 84.74 76.46 52.19 50.41 67.36 71.21 96.45 50.18 68.63 (+4.93)

DARE-TIES
Full 82.14 73.72 49.35 37.78 56.63 70.14 97.35 42.12 63.65 (+0.00)

KnOTS 82.01 72.90 44.15 45.54 60.59 70.89 95.56 47.64 64.91 (+1.26)

Core 84.57 76.09 57.09 51.01 66.64 71.39 96.16 52.14 69.39 (+5.74)

TSV
Full 83.44 75.55 50.99 45.03 59.31 73.33 96.40 49.23 66.66 (+0.00)
KnOTS 81.86 74.91 51.25 41.64 53.93 71.64 97.95 40.36 64.19 (-2.47)

Core 83.86 75.09 52.64 45.39 58.53 72.95 97.63 45.21 66.41 (-0.25)

CART
Full 83.04 81.93 50.39 70.17 59.14 79.11 99.26 49.11 71.52 (+0.00)

KnOTS 83.94 75.18 52.23 54.48 64.78 74.48 95.88 55.73 69.59 (-1.93)

Core 80.83 83.94 54.99 73.28 66.25 80.95 98.69 48.57 73.44 (+1.92)

TIES +Iso-C
Full 78.86 74.45 60.01 39.02 66.65 70.30 98.39 48.59 67.03 (+0.00)

KnOTS 78.46 80.38 58.81 64.97 72.10 76.89 98.33 49.78 72.47 (+5.44)

Core 82.91 84.76 52.41 78.79 71.56 81.43 99.48 52.14 75.44 (+8.41)

DARE-TIES +Iso-C
Full 78.71 75.54 50.84 42.86 65.03 71.88 98.92 48.08 66.48 (+0.00)

KnOTS 82.93 74.18 49.31 46.73 66.64 71.82 96.72 50.57 67.36 (+0.88)

Core 83.27 83.12 54.55 79.04 71.83 82.08 99.36 52.37 75.70 (+9.22)

TSV +Iso-C
Full 79.38 80.38 57.99 65.64 64.22 79.74 98.59 46.49 71.55 (+0.00)

KnOTS 80.81 83.03 58.25 74.34 67.66 79.69 98.54 49.86 74.02 (+2.47)

Core 82.98 85.12 50.95 84.25 71.14 84.39 99.06 53.53 76.43 (+4.88)

CART +Iso-C
Full 80.33 82.11 57.31 77.38 71.17 81.57 98.72 51.91 75.06 (+0.00)

KnOTS 82.05 80.47 56.12 64.58 62.40 78.81 99.22 45.05 71.09 (-3.97)

Core 82.93 84.21 51.14 81.32 72.12 82.83 99.33 55.32 76.15 (+1.09)

Iso-C
Full 80.16 83.03 51.44 74.76 70.72 79.89 98.66 50.20 73.60 (+0.00)

KnOTS 80.33 79.29 57.50 67.60 65.63 79.54 99.26 46.62 71.97 (-1.63)

Core 83.35 84.30 50.13 81.97 71.07 83.46 99.17 53.90 75.92 (+2.32)

Table 4: Joint-task setting absolute accuracy of merged models on the vision tasks with ViT-B/32.

Space TA TIES DARE-TIES TSV CART TIES
+Iso-C

DARE-TIES
+Iso-C

TSV
+Iso-C

CART
+Iso-C Iso-C

Full 43.5 43.6 44.0 45.4 44.8 43.5 44.3 48.3 44.8 52.1
KnOTS 43.5 46.8 45.2 44.6 44.7 40.5 44.8 51.4 52.6 52.9
Core 43.5 47.4 47.6 44.5 49.6 54.1 54.0 55.7 55.6 55.9

Joint-task evaluation in vision setting. We also evaluate vision models in the challenging joint-task
setting introduced in [42], in which the task ID is unknown during inference. Instead of performing a
multi-task evaluation, it evaluates the merged model based on the union of all classes, requiring the
model to distinguish between classes from all tasks. We present the results in Tab. 4. Core Space
facilitates merging with almost all methods, achieving state-of-the-art results when combined with
Iso-C.

5.2 Analysis

Truncation. In this Section, we compare the utilization of full subspace and core space for models
merged with TA. Firstly, we calculate the SVD of the merged matrices: ∆Wmerged for full space and
Mmerged for core space. Then, we truncate a fraction of p least significant values, i.e., σi = 0 for
i > (1− p) ∗ dim(Σ), and observe the drop in the performance of the merged model after truncation.
We present the results in Fig. 4. In full space, we can truncate a fraction up to p = 0.8 values
without performance loss, while in core space, truncation of any component results in a performance
drop. It shows that the core space is dense while the full space contains many unused or redundant
components. We hypothesize that the compactness of core space facilitates model merging as it
extracts only the relevant components.

Core Space improves subspace alignment. In this Section, we evaluate the Subspace Alignment
Ratio (SAR) [28] between each pair of LoRA updates fine-tuned on different tasks. The SAR
measures how much of the subspace of one task is contained in another and correlates with post-
merge performance. We compute SAR in full and core space. Fig. 5 shows that core space yields

9

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of truncated components p

61

62

63

A
cc

ur
ac

y
(%

)

TA + Full space

TA + Core space

Figure 4: Most components in full space are
irrelevant when doing Task-Arithmetic (TA). Re-
moving any components from the core space re-
sults in a performance drop, showing that it is an
information-dense space. We report the results on
vision tasks with ViT-B/32.

Cars DTD
EuroSAT

GTSRB
MNIST

RESISC
SUN397

SVHN
0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

S
A

R

Full Space

Core Space

Figure 5: Subspace Alignment Ratio (SAR) [28].
Each bar shows the average SAR between LoRA
task matrices, Full, and Core Space. In Core
Space, task matrices exhibit higher SAR. The as-
sociated performance gains suggest that better
alignment facilitates more effective merging.

consistently higher alignment. We argue that this result is because the core space enforces a shared
basis across tasks, which filters out task-specific noise and promotes alignment. In Sec. C.1 we show
that higher SAR correlates with lower merging interference.

Table 5: Ablations on the choice of reference basis. Our se-
lected basis (3) achieves significantly higher results than the
single-task basis (1) and the random orthonormal basis of the
same dimensionality (2). We proceed with V ref

A analogously
to U ref

B . We report the TIES-Core results on vision tasks with
ViT-B/32.

Reference Basis U ref
B Shape Avg. Acc. Avg. εU

(1) U
(1)
B (first task) m× r 60.4 13.4

(2) Random orthonormal m× Tr 61.6 13.3
(3) Concatenation (Eq. (4)) m× Tr 68.6 0.0

Choice of the reference basis. To
evaluate the reference bases choice,
we compare the performance of merg-
ing in core space against different ref-
erence bases, and compute the align-
ment error εU defined in Eq. (10) (av-
eraged over all layers and tasks). We
present the results in Tab. 5. In row
(1), we evaluate using the basis of the
first task as a reference basis. In row
(2), we set the reference basis to a ran-
dom orthonormal basis of the same
dimensionality. These two bases per-
form much less than our reference ba-
sis in row (3). Moreover, we confirm that the optimal reference basis from row (3) achieves zero
alignment error. Additionally, we verified experimentally that even in the extreme case where
T · r > min(m,n) (e.g., Tr = 2048 > 768 for merging 8 ViT-B/32 LoRA models), the reconstruc-
tion error defined in Eq. (10) remains exactly zero, consistent with the generalized theoretical result
in Sec. A.4.

6 Conclusion

We propose Core Space, an efficient and effective method for merging task-specific LoRA modules.
By projecting task-specific LoRA updates into a common subspace, Core Space reduces alignment
error, leading to consistent accuracy improvements and SOTA results in both vision and language
settings, while remaining computationally efficient. Our evaluations across vision and language do-
mains confirm its scalability and strong performance in practical settings. We believe that Core Space
can contribute to more efficient and accessible model adaptation in multi-task settings, particularly
for large models.

10

Acknowledgments

We acknowledge the Spanish project PID2022-143257NB-I00, financed by
MCIN/AEI/10.13039/501100011033 and FEDER, and Funded by the European Union EL-
LIOT project. This work was supported by the Fortissimo Plus (FFplus) project Grant Agreement No.
101163317), under the European HighPerformance Computing Joint Undertaking (EuroHPC JU) and
the Digital Europe Programme. The authors gratefully acknowledge access to compute resources
enabled by FFplus. Funded by the European Union. Aniello Panariello acknowledges travel support
from ELIAS (GA no 101120237). Daniel Marczak is supported by National Centre of Science
(NCN, Poland) Grant No. 2021/43/O/ST6/02482. Bartłomiej Twardowski acknowledges the grant
RYC2021-032765-I and National Centre of Science (NCN, Poland) Grant No. 2023/51/D/ST6/02846.

References
[1] T. Akiba, M. Shing, Y. Tang, Q. Sun, and D. Ha. Evolutionary optimization of model merging

recipes. Nature Machine Intelligence, 2025.

[2] E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Alhammadi,
M. Daniele, D. Heslow, J. Launay, Q. Malartic, B. Noune, B. Pannier, and G. Penedo. The falcon
series of language models: Towards open frontier models. arXiv preprint arXiv: 2311.16867,
2023.

[3] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning
natural language inference. Empirical Methods in Natural Language Processing, 2015.

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. Advances in Neural Information Processing Systems,
2020.

[5] G. Cheng, J. Han, and X. Lu. Remote Sensing Image Scene Classification: Benchmark and
State of the Art. Proceedings of the IEEE, 2017.

[6] J. Choi, D. Kim, C. Lee, and S. Hong. Revisiting weight averaging for model merging. arXiv
preprint arXiv:2412.12153, 2024.

[7] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. Describing Textures in the Wild.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014.

[8] M.-J. Davari and E. Belilovsky. Model breadcrumbs: Scaling multi-task model merging with
sparse masks. Proceedings of the European Conference on Computer Vision, 2024.

[9] DeepSeek-AI. Deepseek-v3 technical report. arXiv preprint arXiv: 2412.19437, 2024.

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 conference of the North
American chapter of the association for computational linguistics: human language technolo-
gies, 2019.

[11] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[12] A. A. Gargiulo, D. Crisostomi, M. S. Bucarelli, S. Scardapane, F. Silvestri, and E. Rodolà.
Task singular vectors: Reducing task interference in model merging. Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, 2025.

[13] A. Grattafiori, A. Dubey, A. Jauhri, and A. P. et al. The llama 3 herd of models. arXiv preprint
arXiv: 2407.21783, 2024.

11

[14] P. Helber, B. Bischke, A. Dengel, and D. Borth. Introducing eurosat: A novel dataset and
deep learning benchmark for land use and land cover classification. In IEEE International
Geoscience and Remote Sensing Symposium, 2018.

[15] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. De Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In International Conference
on Machine Learning, 2019.

[16] J. E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen. Lora: Low-rank
adaptation of large language models. International Conference on Learning Representations,
2021.

[17] Hugging Face. https://huggingface.co, 2024.

[18] G. Ilharco, M. T. Ribeiro, M. Wortsman, L. Schmidt, H. Hajishirzi, and A. Farhadi. Editing
models with task arithmetic. In International Conference on Learning Representations, 2023.

[19] X. Jin, X. Ren, D. Preotiuc-Pietro, and P. Cheng. Dataless knowledge fusion by merging weights
of language models. In International Conference on Learning Representations, 2023.

[20] T. Khot, A. Sabharwal, and P. Clark. SciTail: A textual entailment dataset from science question
answering. In Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[21] D. J. Kopiczko, T. Blankevoort, and Y. M. Asano. Vera: Vector-based random matrix adaptation.
International Conference on Learning Representations, 2023.

[22] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained
categorization. In IEEE International Conference on Computer Vision and Pattern Recognition
Workshops, 2013.

[23] Y. LeCun, C. Cortes, and C. Burges. Mnist handwritten digit database. ATT Labs [Online]., 2,
2010.

[24] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

[25] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

[26] S. Liu, C. Wang, H. Yin, P. Molchanov, Y. F. Wang, K. Cheng, and M. Chen. Dora: Weight-
decomposed low-rank adaptation. In International Conference on Machine Learning, 2024.

[27] G. Mancusi, M. Bernardi, A. Panariello, A. Porrello, S. Calderara, and R. Cucchiara. Is multiple
object tracking a matter of specialization? In Advances in Neural Information Processing
Systems, 2024.

[28] D. Marczak, S. Magistri, S. Cygert, B. Twardowski, A. D. Bagdanov, and J. van de Weijer.
No task left behind: Isotropic model merging with common and task-specific subspaces. In
International Conference on Machine Learning, 2025.

[29] D. Marczak, B. Twardowski, T. Trzci’nski, and S. Cygert. Magmax: Leveraging model merging
for seamless continual learning. Proceedings of the European Conference on Computer Vision,
2024.

[30] M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli. A SICK cure
for the evaluation of compositional distributional semantic models. In Proceedings of the Ninth
International Conference on Language Resources and Evaluation, 2014.

[31] I. E. Marouf, S. Roy, E. Tartaglione, and S. Lathuilière. Weighted ensemble models are strong
continual learners. arXiv preprint arXiv: 2312.08977, 2023.

[32] M. Matena and C. Raffel. Merging models with fisher-weighted averaging. In Advances in
Neural Information Processing Systems, 2021.

12

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng. Reading digits in natural im-
ages with unsupervised feature learning. In Neural Information Processing Systems Workshops,
2011.

[34] G. Ortiz-Jiménez, A. Favero, and P. Frossard. Task arithmetic in the tangent space: Improved
editing of pre-trained models. In Advances in Neural Information Processing Systems, 2023.

[35] A. Panariello, E. Frascaroli, P. Buzzega, L. Bonicelli, A. Porrello, and S. Calderara. Modular
embedding recomposition for incremental learning. Brit. Mach. Vis. Conf., 2025.

[36] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In International Conference on Machine Learning, 2021.

[37] A. Rame, M. Kirchmeyer, T. Rahier, A. Rakotomamonjy, P. Gallinari, and M. Cord. Di-
verse weight averaging for out-of-distribution generalization. Advances in Neural Information
Processing Systems, 35, 2022.

[38] F. Rinaldi, G. Capitani, L. Bonicelli, D. Crisostomi, F. Bolelli, E. Ficarra, E. Rodolà, S. Calder-
ara, and A. Porrello. Update your transformer to the latest release: Re-basin of task vectors.
International Conference on Machine Learning, 2025.

[39] A. Soutif, S. Magistri, J. v. d. Weijer, and A. D. Bagdanov. An empirical analysis of forgetting
in pre-trained models with incremental low-rank updates. In Proceedings of The 3rd Conference
on Lifelong Learning Agents, Proceedings of Machine Learning Research, 2025.

[40] C. . C. Staff. Singular value decompositions, 2020. Course Notes, CS 357: Numerical Methods
I, Fall 2020.

[41] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man vs. computer: Benchmarking machine
learning algorithms for traffic sign recognition. Neural Networks, 32:323–332, 2012.

[42] G. Stoica, P. Ramesh, B. Ecsedi, L. Choshen, and J. Hoffman. Model merging with svd to tie
the knots. International Conference on Learning Representations, 2025.

[43] D. Tam, M. Bansal, and C. Raffel. Merging by matching models in task subspaces. arXiv
preprint arXiv: 2312.04339, 2023.

[44] A. Tang, L. Shen, Y. Luo, Y. Zhan, H. Hu, B. Du, Y. Chen, and D. Tao. Parameter efficient
multi-task model fusion with partial linearization. In International Conference on Learning
Representations, 2023.

[45] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. GLUE: A multi-task bench-
mark and analysis platform for natural language understanding. In International Conference on
Learning Representations, 2018.

[46] K. Wang, N. Dimitriadis, G. Ortiz-Jiménez, F. Fleuret, and P. Frossard. Localizing task
information for improved model merging and compression. In International Conference on
Machine Learning, 2024.

[47] A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. Naacl, 2018.

[48] M. Wortsman, G. Ilharco, S. Y. Gadre, R. Roelofs, R. Gontijo-Lopes, A. S. Morcos,
H. Namkoong, A. Farhadi, Y. Carmon, S. Kornblith, et al. Model soups: averaging weights
of multiple fine-tuned models improves accuracy without increasing inference time. In ICML,
2022.

[49] J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. Sun database: Exploring a large
collection of scene categories. International Journal of Computer Vision, 2016.

[50] P. Yadav, D. Tam, L. Choshen, C. Raffel, and M. Bansal. TIES-merging: Resolving interference
when merging models. In Advances in Neural Information Processing Systems, 2023.

13

[51] A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, H. Lin,
J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao, K. Yang,
L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Xia, X. Ren, X. Ren, Y. Fan,
Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115, 2024.

[52] E. Yang, L. Shen, G. Guo, X. Wang, X. Cao, J. Zhang, and D. Tao. Model merging in llms,
mllms, and beyond: Methods, theories, applications and opportunities. arXiv preprint arXiv:
2408.07666, 2024.

[53] E. Yang, L. Shen, Z. Wang, G. Guo, X. Chen, X. Wang, and D. Tao. Representation surgery for
multi-task model merging. International Conference on Machine Learning, 2024.

[54] E. Yang, Z. Wang, L. Shen, S. Liu, G. Guo, X. Wang, and D. Tao. Adamerging: Adaptive model
merging for multi-task learning. In International Conference on Learning Representations,
2024.

[55] L. Yu, B. Yu, H. Yu, F. Huang, and Y. Li. Language models are super mario: Absorbing abilities
from homologous models as a free lunch. In International Conference on Machine Learning,
2024.

[56] Q. Zhang, M. Chen, A. Bukharin, N. Karampatziakis, P. He, Y. Cheng, W. Chen, and T. Zhao.
Adalora: Adaptive budget allocation for parameter-efficient fine-tuning. In International
Conference on Learning Representations, 2023.

14

Appendix

Contents of the Appendix
• A No Information Loss in Core Space Representation

– A.1 Least Squares Solutions
– A.2 Alignment Error Quantification
– A.3 Optimal Reference Bases
– A.4 Generalization Beyond the T · r ≤ m,n Assumption

• B Computational Complexity Analysis
• C Additional Analysis

– C.1 High subspace alignment leads to lower interference
– C.2 Rank of the merged update matrices

• D Additional Experiment Details
– D.1 Experimental Environment
– D.2 Hyperparameter Search
– D.3 Code Availability and Pseudocode

• E Additional Results
– E.1 Per-task evaluation in vision setting for ViT-L/14
– E.2 Experiments with Heterogeneous Ranks
– E.3 Extension to VeRA

A No Information Loss in Core Space Representation

A.1 Least Squares Solutions

Let U (t)
A ∈ Rr×r, Σ(t)

A ∈ Rr×r, V (t)
A ∈ Rn×r, U (t)

B ∈ Rm×r, Σ(t)
B ∈ Rr×r, and V

(t)
B ∈ Rr×r be the

components of two low-rank matrices A(t) and B(t) represented in SVD form. Let U ref
B ∈ Rm×T ·r

and V ref
A ∈ Rn×T ·r be the shared reference bases, obtained by taking the left and the right singular

vectors from the SVD of the horizontally and vertically stacked low-rank matrices B(t) and A(t),
respectively (see Eq. 4 in the main paper). We assume T · r ≤ m and T · r ≤ n, where T is the
number of tasks and r is LoRA rank, as both are typically small relative to the feature dimension.
Then, the solutions to the least square problems:

R
(t)
B = argmin

R∈RT ·r×r

∥∥∥U ref
B R− U

(t)
B

∥∥∥2
F
, Q

(t)
A = argmin

Q∈RT ·r×r

∥∥∥V ref
A Q− V

(t)
A

∥∥∥2
F
, (14)

are given by:
R

(t)
B = U ref

B

>
U

(t)
B , Q

(t)
A = V ref

A

>
V

(t)
A . (15)

Proof. Since V
(t)
A and U

(t)
B come from the SVDs of A(t) and B(t), they are orthonormal:

V
(t)
A

>
V

(t)
A = Ir U

(t)
B

>
U

(t)
B = Ir,

where Ir is the r × r identity matrix. Similarly, the reference bases U ref
B and V ref

A also have
orthonormal columns:

V ref
A

>
V ref
A = IT ·r, U ref

B

>
U ref
B = IT ·r,

where IT ·r is the T · r × T · r and T · r × T · r identity matrix.

Consider the problems in Eq. (14). Each objective is convex and admits a unique global minimizer,
as U ref

B and V ref
A have full column rank due to their orthonormality. To solve the first problem, we

compute the gradient of the objective function with respect to R:

∂
∥∥∥U ref

B R− U
(t)
B

∥∥∥2
F

∂R
= 2U ref

B

>
(U ref

B R− U
(t)
B).

15

Setting the gradient to zero and solving the resulting equation gives:

U ref
B

>
U ref
B R

(t)
B = U ref

B

>
U

(t)
B ⇒ R

(t)
B = U ref

B

>
U

(t)
B ,

since U ref
B

>
U ref
B = IT ·r.

Similarly, for the second problem in Eq. (14):

Q
(t)
A = V ref

A

>
V

(t)
A

A.2 Alignment Error Quantification

Lemma. Let U (t)
B ∈ Rm×r and U ref

B ∈ Rm×T ·r be matrices with orthonormal columns where
T · r = rank([B(1), . . . , B(T)]) ≤ m, and let R(t)

B = U ref
B

>
U

(t)
B ∈ RT ·r×r be the optimal solution

minimizing the error of the least-square problem. Then, the optimal alignment error is given by:

εU =
∥∥∥U ref

B R
(t)
B − U

(t)
B

∥∥∥2
F
= r −

∥∥∥∥U (t)
B

>
U ref
B

∥∥∥∥2
F

. (16)

Proof. To derive the alignment error, we simplify the notation by temporarily omitting the dependency
on the model index t. Substituting the definition RB = U ref

B

>
UB from Eq. (15), we can write:

εU = ||U ref
B U ref

B

>
UB − UB ||2F= ||(U ref

B U ref
B

> − Im)UB ||2F

= tr

([
(U ref

B U ref
B

> − Im)UB

]> [
(U ref

B U ref
B

> − Im)UB

])
= tr

(
U>
B (U ref

B U ref
B

> − Im)2UB

)
= tr

(
U>
B (U ref

B U ref
B

>
U ref
B U ref

B

> − 2U ref
B U ref

B

>
+ Im)UB

)
= tr

(
U>
B (U ref

B U ref
B

> − 2U ref
B U ref

B

>
+ Im)UB

)
(by using U ref

B

>
U ref
B = I)

= tr
(
U>
B (Im − U ref

B U ref
B

>
)UB

)
=

= tr
(
UB

>UB

)
− tr

(
U>
BU ref

B U ref
B

>
UB

)
(by linearity of trace)

= r −
∥∥U>

BU ref
B

∥∥2
F
,

where tr(U>
BUB) = ‖UB‖2F= r, since UB has orthonormal columns, and tr(U>

BU ref
B U ref

B

>
UB) =

‖U>
BU ref

B ‖2F by the cyclic property of the trace and definition of the Frobenius norm.

A.3 Optimal Reference Bases

Lemma. A solution U∗ to the quadratic program:

max
U∈S

∥∥∥∥U (t)
B

>
U

∥∥∥∥2
F

= max
U∈S

tr

(
U>U

(t)
B U

(t)
B

>
U

)
, S =

{
U ∈ Rm×T ·r ∣∣ U>U = IT ·r

}
,

is given by any orthonormal basis whose columns include the top r eigenvectors corresponding to
nonzero eigenvalues of B(t)B(t)> ∈ Rm×m or, equivalently, by the top r left singular vectors of
B(t). At the optimum, the objective achieves the maximum value of r, yielding zero alignment error
in εU as defined in Eq. (16).

Proof. The proof proceeds in two steps. First, we show that any orthonormal basis U∗ containing
the top r eigenvectors of U (t)

B U
(t)>
B solves the optimization problem. Second, we establish that the

eigenvectors of U (t)
B U

(t)>
B are the same as those of B(t)B(t)>.

16

Step 1: Solving the constrained optimization. By leveraging the method of Lagrange multipliers,
we write the augmented objective function:

L(U,Λ) = tr(U>U
(t)
B U

(t)>
B U)− tr

(
Λ(U>U − IT ·r)

)
, (17)

where Λ ∈ RT ·r×T ·r is a matrix of Lagrange multipliers. Taking gradients with respect to U and Λ,
we obtain:

∇UL(U,Λ) =
∂

∂U
tr(U>U

(t)
B U

(t)>
B U)− ∂

∂U
tr(Λ(U>U − IT ·r))

= 2U
(t)
B U

(t)>
B U − 2UΛ

(18)

∇ΛL(U,Λ) = − ∂

∂Λ
tr(Λ(U>U − IT ·r)) = U>U − IT ·r. (19)

Setting the gradients to zero gives the two necessary optimality conditions:

U
(t)
B U

(t)>
B U∗ = U∗Λ∗, (20)

U>
∗ U∗ = IT ·r. (21)

The second condition, Eq. (21), holds by construction: we explicitly choose U∗ ∈ Rm×T ·r to be
an orthonormal matrix. Specifically, we define U∗ = [v1, . . . , vr, p1, . . . , p(T−1)·r], where {vi}ri=1

are orthonormal eigenvectors of U (t)
B U

(t)>
B associated with its nonzero eigenvalues λ1, . . . , λr, and

{pj}(T−1)·r
j=1 are additional orthonormal vectors chosen to complete the basis.

Next, to verify the first condition reported in Eq. (20), we define the diagonal matrix Λ∗ =
diag(λ1, . . . , λr, 0, . . . , 0) ∈ RT ·r×T ·r, where the trailing zeros correspond to the eigenvalues
associated with the orthogonal complement. Since each vi is an eigenvector of U (t)

B U
(t)>
B with

eigenvalue λi, and each pj lies in the nullspace of that matrix, we have:

U
(t)
B U

(t)>
B vi = λivi for i = 1, . . . , r, and U

(t)
B U

(t)>
B pj = 0 for j = 1, . . . , (T − 1) · r.

Therefore:
U

(t)
B U

(t)>
B U∗ = [λ1v1, . . . , λrvr, 0, . . . , 0] = U∗Λ∗,

which confirms that the first-order condition in Eq. (20) is satisfied.

Next, we substitute this result into the original expression to obtain the optimal value:

L∗ = tr(U>
∗ U

(t)
B U

(t)>
B U∗) = tr(U>

∗ U∗Λ∗) = tr(Λ∗) =

r∑
i=1

λi = tr(U
(t)
B U

(t)>
B) = r,

proving that the maximum value of the quadratic problem is r, and the corresponding alignment error
εU for U∗ is zero.

Step 2: Equivalence of eigenspaces. Now we show that, given the matrix B(t) ∈ Rn×r from
a LoRA-based adaptation, if v is an eigenvector of B(t)B(t)>, then v is also, by construction, an
eigenvector of U (t)

B U
(t)>
B , where B(t) = U

(t)
B Σ(t)V

(t)>
B :

v is an eigenvector of B(t)B(t)> =⇒ B(t)B(t)>v = λv

=⇒ U
(t)
B Σ2(t)U

(t)>
B v = λv

=⇒ (B(t)B(t)>)U
(t)
B Σ2(t)U

(t)>
B v = (B(t)B(t)>)λv

=⇒ U
(t)
B Σ2(t)U

(t)>
B v = λB(t)B(t)>v.

From the second and fourth rows, we obtain:

λB(t)B(t)>v = λv (22)

17

If λ > 0, we obtain that v is an eigenvector of B(t)B(t)> and its corresponding eigenvalue is = 1. If
λ = 0, then we have:

v is an eigenvector of B(t)B(t)>, λ = 0 =⇒ B(t)B(t)>v = 0

=⇒ U
(t)
B Σ2(t)U

(t)>
B v = 0

=⇒ v>U
(t)
B Σ2(t)U

(t)>
B v = 0

Since the matrix B has rank r, it has exactly r strictly positive singular values, while all other singular
values beyond rank r are zero. Thus, the matrix Σ2(t) is positive definite. Hence, it must be:

v>U
(t)
B Σ2(t)U

(t)>
B v = 0 =⇒ U

(t)>
B v = 0 =⇒ U

(t)
B U

(t)>
B v = 0, (23)

which confirms that if λ = 0, then v is an eigenvector of U (t)
B U

(t)>
B with eigenvalue 0.

Generalization to Multiple Tasks. This result generalizes directly to the multi-task setting, as
defined in the main paper, by applying it to the matrix B ∈ Rm×T ·r obtained by horizontally stacking
the LoRA updates B(t) from all tasks T . Then the optimal reference basis U∗ = U ref

B (as done in
our approach) is given by the left singular vectors of B, obtained via SVD. This matrix satisfies both
orthonormality and the optimality conditions derived above. Defining Λ∗ = diag(λ1, . . . , λT ·r),
where λi are the eigenvalues of BB>, guarantees perfect reconstruction and zero alignment error for
all tasks.

A.4 Generalization Beyond the T · r ≤ m,n Assumption

The derivations in Secs. A.1 to A.3 assumed that the total LoRA rank T · r is less than both m and n.
We now show that this assumption is not necessary, and that the reconstruction error remains zero
even when T · r > m or T · r > n.

Intrinsic rank. When T · r > m (for B) or T · r > n (for A), stacking the LoRA matrices still yields
reference bases with intrinsic dimensions:

dU = rank([B(1), . . . , B(T)]) ≤ m, dV = rank([A(1), . . . , A(T)]>) ≤ n,

since the number of linearly independent directions cannot exceed the number of rows or columns

We can therefore replace the reference bases U ref
B ∈ Rm×T ·r and V ref

A ∈ Rn×T ·r with truncated
orthonormal bases:

U ref
B ∈ Rm×dU , V ref

A ∈ Rn×dV ,

whose columns span the full LoRA update space.

Least-Squares Solution. Rewriting the least-squares problem (Eq. (14)) in terms of the truncated
U ref
B gives:

R
(t)
B = argmin

R∈RdU×r

‖U ref
B R− U

(t)
B ‖2F .

Following the same derivation as in Sec. A.1, the optimal solution is

R
(t)
B = (U ref

B)>U
(t)
B ,

with an analogous expression for Q(t)
A .

Alignment Error. Substituting this solution into the error expression of Sec. A.2 shows that the
optimal alignment error remains

εU = r − ‖(U (t)
B)>U ref

B ‖2F ,

which achieves zero when U ref
B spans the column space of all B(t). Hence, the theoretical guarantees

extend unchanged to the case T · r > m,n.

18

B Computational Complexity Analysis

Iso-C Complexity. To assess the time complexity of our approach, we begin by analyzing that of
Iso-C [28], to establish a baseline for comparison. For each layer, the Iso-C procedure can be broken
down into the following steps:

• LoRA → full space: Compute ∆(t) = B(t)A(t) for t = 1, . . . , T , given the matrices B(t)

and A(t). The resulting complexity is O(T · r · n ·m).

• Summation: Applying task arithmetic in the full space, ∆TA =
∑T

t ∆(t), involves a cost of
O(T · n ·m).

• SVD computation: Computing the decomposition ∆TA = UΣV > for an m× n matrix has
a complexity of O(m2 · n+ n3) [40].

• Isotropization: The final step, ∆Iso-C = UΣavgV
>, is dominated by O(m2 · n).

Overall, the total cost of Iso-C is dominated by O(T · r ·n ·m+m2 ·n+n3). Assuming that m = n,
then the time complexity of Iso-C is approximately cubic: O(n3 + T · r · n2) with respect to the
number of features.

KnOTS Complexity. Secondly, we analyze the computational cost of the KnOTS method [42]:

• LoRA → full space: As in Iso-C, this step has complexity O(T · r · n ·m).

• Concatenation: Stacking all weight matrices ∆W =
[
∆W (1), . . . ,∆W (T)

]
as block

columns of a global matrix has a time complexity of O(T · n ·m).

• SVD computation: This is performed on a matrix of size m×(n·T), resulting in a complexity
of O(n2 · T 2 ·m+m3), by making use of the transpose trick3.

• Merge: Assuming simple task arithmetic is performed in the V > space, T blocks of n
columns each are summed, yielding a complexity of O(T 2 · r · n) to compute V >

merge.

• Reconstruction: The final step ∆KNOTS = UΣV >
merge has a complexity of O(m · n · T · r+

T · r · n).

Overall, the total cost of KNOTS is dominated by O(m3+T ·n(2r ·m+m+n ·T ·m+T · r+ r)).
Assuming m = n, the time complexity simplifies to O(n3T 2). Compared to Iso-C, the time
complexity of KNOTS remains cubic with respect to the number of features. However, it includes an
additional T 2 factor that scales quadratically with the number of tasks being merged.

TSV Complexity. Then we analyze the cost of TSV [12]:

• LoRA → full space: As previously, this step has complexity O(T · r · n ·m).

• SVD Computation: In this step SVD is performed on T matrices of size m× n resulting in
a complexity of O(T · (m2 · n+ n3)).

• Concatenation: Stacking the first k components of left and right singular vectors for all
tasks results in O(T · k(n+m)).

• Global SVD Computation: The SVD performed on the stacked matrices n ×m requires
O(2 · (m2 · n+ n3)).

• Obtaining orthogonal matrices: This step requires O(2 ·m2 · n).
• Merge: The final merge has a complexity of O(m · n · T · r + T · r · n).

The overall cost of TSV is thus O(T ·r·m·n+T ·r·n+T ·m2·n+T ·n3+T ·k·m+T ·k·n+m2·n+n3).
Assuming that m = n and T, r, k � n, the computational cost is dominated by O(T · n3).

Core Space Complexity. Finally, we analyze the cost of our approach in Core Space.

3SVD(P>) = U
′
Σ

′
V

′>
→ P = (U

′
Σ

′
V

′>
)> = V

′
ΣU

′>
, thus, if r � n, this will reduce the number

of operations. We will apply the transpose trick throughout.

19

• Stacking A(t) and B(t): Stacking two sequences of T matrices – one with each matrix
of shape r × n and the other with each matrix of shape m × r – results in a cost of
O(T · r(n+m)).

• SVD computation: The stacked global A matrix has shape (T · r)× n; hence, the cost of its
SVD is O(n2 · (T · r) + (T · r)3), by using the transpose trick. The stacked B matrix has
shape m× (T · r), with a cost of O(m2 · (T · r) + (T · r)3). The overall cost of this step is
O((m2 + n2) · (T · r) + 2 · (T · r)3).
Low-rank loop: In the optimized version of the low-rank loop, we only compute the matrix
multiplication to obtain the aligned matrices. In this case the total cost is O(T · (Tmr2 +
Tr2n+T 2r3)) (using the optimal matrix multiplication order (U ref

B B)(AV ref
A)). Assuming

that T, r << n,m, the cost is dominated by O(T 2r2(m+ n)).
• Merge: Assuming simple task arithmetic is performed in the aligned core space, the cost is
O(T 3 · r2).

• Isotropization: Optionally, Iso-C can be applied in the core space; since the core space is
defined within a square matrix of dimension T · r × T · r, this step adds an additional time
complexity of O(T 3r3).

• Reconstruction: The final step requires O(m · T 2 · r2 +m · T · r · n).

To sum up, our approach involves:

O(Tr(n+m)︸ ︷︷ ︸
Stacking

+Tr(m2 + n2) + 2(Tr)3︸ ︷︷ ︸
SVD refs.

+

+ (T 2r2(m+ n))︸ ︷︷ ︸
Low-rank loop.

+Tr(T 2r + Trm+mn)︸ ︷︷ ︸
Merge & Rec.

) =

O(Tr(m+ n+ 2m2 + 2n2 +mn+ r2) + T 2r2(2m+ n+ T) + T 3r3)

If we assume that m = n, the total time complexity simplifies to:

O(Tr(2n+ 5n2 + r2) + T 2r2(3n+ T) + T 3r3), (24)

which, if we assume T, r � n, is dominated by:

O(Trn2) (25)

C Additional Analysis

C.1 High subspace alignment leads to lower interference

In this Section, we experimentally show that merging in Core Space reduces interference when
merging models. We follow [53, 28] and measure the interference as the L1 distance between the final
embeddings of task-specific models and the merged one. We compare the interference when merging
with TSV + Iso-C in Full Space versus Core Space. For each dataset, we collect the activations from
the final layer (i.e., the projection to a common vision-language space) of both the task-specific model
and the merged model. We present the average distance across all the samples in the test set. We
observe lower interference when merging in Core Space, highlighting its effectiveness. Note that Full
Space merging, which causes higher interference, also exhibits higher SAR in Sec. 5.2.

C.2 Rank of the merged update matrices

Consider T = 8 ViT-B/32 models fine-tuned with LoRA of rank r = 16. The merged update matrices
∆W resulting from different merging methods and spaces can have different effective ranks r∆W .
Table 6 reports the average rank of ∆W across all layers.

In most cases, the target rank of ∆W is equal to Tr = 128. The only exception is merging with TIES
in Full space, where for weight matrices W ∈ Rm×n the effective rank approaches the dimensionality
of the matrices d = min(m,n) = 768. This phenomenon arises because TIES performs trimming on
the reconstructed weight matrices ∆Wt = BA, which destroys the low-rank structure. In contrast,
both Core and KnOTS operate directly in a constrained Tr-dimensional space, ensuring that the
merged ∆W maintains the intended rank.

20

Cars DTD EuroSAT GTSRB MNIST RESISC45 SUN397 SVHN
0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ea

n
L

1
D

is
ta

nc
e

0.255

0.224

0.178
0.184

0.175

0.245

0.308

0.239
0.234

0.183

0.164

0.103

0.132

0.211

0.278

0.197

Final Activation Distances: Models merged with TSV + Iso in Full vs Core Space

Full

Core

Figure 6: Mean L1 distance between the final embeddings of task-specific models and the merged
one using TSV + Iso in Full and Core space. We used ViT-B/16 model.

Table 6: Average rank r∆W of merged update matrices ∆W obtained by merging 8 ViT-B/32 LoRA
models with r = 16 (so Tr = 128).

Merging Space TA TSV TIES
Full 128.00 128.00 766.25
KnOTS 128.00 128.00 128.00
Core 128.00 128.00 128.00

D Additional Experiment Details

Licenses of Used Datasets and Models

In our research, we employed publicly available datasets and models, each governed by specific
licenses. Below, we outline the sources and associated licenses for each:

• KnOTS LoRA Checkpoints [42]: The KnOTS repository, which provides LoRA-adapted
model checkpoints and training scripts, is licensed under the MIT License. This permissive
license allows for reuse and modification with proper attribution.

• Cars196 [22]: The Cars196 dataset is available for non-commercial research purposes.
Specific licensing details are not explicitly provided.

• Describable Textures Dataset (DTD) [7]: The DTD is made available to the computer vi-
sion community for research purposes. The dataset is licensed under the Creative Commons
Attribution 4.0 License (CC BY 4.0).

• EuroSAT [14]: The EuroSAT dataset is licensed under the MIT License.
• German Traffic Sign Recognition Benchmark (GTSRB) [41]: The GTSRB dataset is

licensed under the Creative Commons Zero (CC0) Public Domain Dedication.
• MNIST [23]: The MNIST dataset is publicly available for research purposes. Specific

licensing details are not explicitly provided; users are advised to consult the dataset’s source
for more information.

• NWPU-RESISC45 [5]: The NWPU-RESISC45 dataset is licensed under the Creative
Commons Attribution 4.0 License (CC BY 4.0).

21

Core Space Merging - Optimized

Vertical Concat

Horizontal Concat

SVD

SVD

Merging
1

Merged
Core Matrices

Ta
sk

Figure 7: The proposed Core Space Merging with the optimized algorithm. First, we perform SVD
on a concatenation of low-dimensional A(t) and B(t) matrices to obtain reference bases. Afterwards,
we directly compute the aligned core matrices. Finally, we perform merging in the Core Space and
reconstruct to obtain the final ∆W .

• SUN397 [49]: The SUN397 dataset is available for research purposes only. Specific
licensing details are not explicitly provided; users are advised to consult the dataset’s source
for more information.

• Street View House Numbers (SVHN) [33]: The SVHN dataset is available for non-
commercial use only.

• Stanford Natural Language Inference (SNLI) [3]: The SNLI dataset is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0).

• Multi-Genre Natural Language Inference (MNLI) [47]: The MNLI dataset is released
under the Open American National Corpus (OANC) license, which permits free use, modifi-
cation, and sharing under permissive terms.

• Sentences Involving Compositional Knowledge (SICK) [30]: The SICK dataset is dis-
tributed under a Creative Commons Attribution-NonCommercial-ShareAlike license.

• Question Natural Language Inference (QNLI) [45]: The QNLI dataset is part of the
GLUE benchmark. Specific licensing details are not explicitly provided; users are advised
to consult the dataset’s source for more information.

• Recognizing Textual Entailment (RTE) [45]: The RTE dataset is part of the GLUE
benchmark. Specific licensing details are not explicitly provided; users are advised to
consult the dataset’s source for more information.

• SciTail [20]: The SciTail dataset is licensed under the Apache License 2.0.

D.1 Optimized Pipeline

We report in Fig. 7 the illustration of the Core Space approach with the optimized pipeline presented
in Sec. 4.2.

D.2 Experimental Environment

The language experiments with Llama 3 8B were performed with a single 48G NVIDIA L40S. In
contrast, the more affordable vision experiments were executed using a single 16G NVIDIA RTX
4080. To keep things fair, the reported times for the language experiments all refer to experiments
performed on the same machine.

Our implementation builds directly on the KnOTS codebase [42] and uses the exact LoRA checkpoints
they released. For full details on the original training and adaptation procedures, please refer to [42].

22

D.3 Hyperparameter Search

To find optimal hyperparameters for each model, we adopt the widely used validation holdout
strategy [42, 28, 12, 50]. Specifically, we perform a linear search for hyperparameters on the validation
set, starting from a defined minimum value and incrementally increasing it until performance declines,
indicating the optimal range. The identified optimal hyperparameters are then applied to the test set.
We use the following search settings:

• Scaling factor α starts at 0.1, increasing in increments of 0.1. This is used for every
approach.

• The top-K parameter for TIES and DARE-TIES begins at 10 and increases in increments of
10.

• The pruning factor p for DARE-TIES starts at 0.1 and increases in increments of 0.1.
• For CART, the pruning rank is searched over the set {0.04, 0.08, 0.16, 0.32}, following

the methodology of the original paper. Additionally, CART includes an extra scaling
factor λ in its merging formulation. Specifically, the merged weights are computed as
Wmerged = W0 +α(θavg + λ

∑T
t=1 τ̄t), where θavg denotes the average of the updates and τ̄t

represents the centered task vector for task t. For further details, we refer the reader to [6].

In Tab. 7, we report the parameters used for the various merging methods in Core Space across
all backbones. Note that we search for the optimal parameters for all methods across all spaces to
maintain fairness. For the natural-language inference experiments, we omit CART as its hyperparam-
eter tuning proved prohibitively expensive and exclude +Iso-C variants, as they consistently degraded
performance.

Table 7: Optimal hyperparameters for Core-Space merging on each backbone and merging strategy,
including +Iso-C variants.

Backbone Merging Method α Top-K Pruning p CART rank λ

ViT-B/32

TIES-Core 0.6 10 - - -
TIES-Core+Iso-C 2.0 30 - - -
DARE-TIES-Core 0.6 10 0.1 - -
DARE-TIES-Core+Iso-C 2.0 30 0.1 - -
TSV-Core 0.2 - - - -
TSV-Core+Iso-C 0.9 - - - -
CART-Core 0.4 - - 0.32 5.8
CART-Core+Iso-C 0.7 - - 0.04 2.6
Iso-C-Core 0.9 - - - -

ViT-L/14

TIES-Core 0.4 10 - - -
TIES-Core+Iso-C 2.4 20 - - -
DARE-TIES-Core 0.4 10 0.1 - -
DARE-TIES-Core+Iso-C 2.4 20 0.2 - -
TSV-Core 0.2 - - - -
TSV-Core+Iso-C 0.9 - - - -
CART-Core 0.1 - - 0.04 6.5
CART-Core+Iso-C 1.0 - - 0.08 2.0
Iso-C-Core 0.9 - - - -

Llama 3 8B

TIES-Core 1.1 80 - - -
DARE-TIES-Core 1.1 80 0.1 - -
TSV-Core 0.5 - - - -
Iso-C-Core 2.8 - - - -

D.4 Code Availability and Pseudocode

Our Core Space merging implementation is released at https://github.com/apanariello4/
core-space-merging.

23

https://github.com/apanariello4/core-space-merging
https://github.com/apanariello4/core-space-merging

Listing 1 Basic PyTorch pseudocode for model merging in Core Space.

1 from torch.linalg import svd
2

3 A_list, B_list = ..., ...
4

5 r, n = A_list[0].shape
6 m, _ = B_list[0].shape
7

8 A_stack = torch.cat(A_list, dim=0) # (T*r, n)
9 B_stack = torch.cat(B_list, dim=1) # (m, T*r)

10

11 # Calculate reference bases
12 Vh_A_ref = svd(A_stack, full_matrices=False)[2] # (T*r, n)
13 U_B_ref = svd(B_stack, full_matrices=False)[0] # (m, T*r)
14

15 M_list = []
16 for A, B in zip(A_list, B_list):
17 # Theory Version
18 # U_A, S_A, Vh_A = svd(A, full_matrices=False) # (r, r), (r,), (r, n)
19 # U_B, S_B, Vh_B = svd(B, full_matrices=False) # (m, r), (r,), (r, r)
20

21 # M = torch.diag(S_B) @ (Vh_B @ U_A) @ torch.diag(S_A) # (r, r)
22

23 # Calculate alignment matrices
24 # Q_A = Vh_A @ Vh_A_ref.T
25 # R_B = U_B_ref.T @ U_B
26

27 # Align the core matrix
28 # M_aligned = R_B @ M @ Q_A # (T*r, T*r)
29

30 # Optimized Version
31 M_aligned = U_B_ref.T @ B @ A @ Vh_A_ref.T
32 M_list.append(M_aligned)
33

34 if merge_strategy == 'TA':
35 M_merged = torch.stack(M_list).sum(dim=0)
36 elif merge_strategy == 'ties':
37 M_merged = ties_merging(M_list)
38 elif merge_strategy == '...':
39 M_merged = ...
40

41 # Reconstruct delta W
42 delta_W = U_B_ref @ M_merged @ Vh_A_ref

Listing 1 gives PyTorch-style pseudocode illustrating how to apply any merging strategy within the
Core Space framework.

24

Table 8: Accuracies of merged models normalized against fine-tuned models on the vision datasets
with ViT-L/14.

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. Accuracy 99.70 70.00 98.50 97.20 99.50 95.70 79.60 97.7 -

TA Full 80.01 79.50 65.59 59.98 82.20 79.55 86.71 64.74 74.79 (+0.00)

TIES
Full 79.65 78.28 64.43 61.10 83.82 79.42 87.45 69.94 75.51 (+0.00)

KnOTS 82.47 80.26 64.65 68.85 88.48 82.37 88.18 76.63 78.99 (+3.48)
Core 81.94 80.03 65.78 68.94 87.44 81.85 88.48 73.75 78.53 (+3.02)

DARE-TIES
Full 79.70 78.82 64.99 60.63 83.92 79.32 87.07 69.84 75.53 (+0.00)

KnOTS 80.41 79.65 64.84 62.95 85.33 79.73 87.55 71.00 76.43 (+0.90)

Core 82.97 80.03 65.66 68.34 87.75 82.48 88.80 75.88 78.99 (+3.46)

TSV
Full 82.38 80.11 66.12 68.18 85.46 83.02 87.89 70.76 77.99 (+0.00)

KnOTS 80.17 79.95 66.94 60.24 83.76 79.35 86.85 65.59 75.36 (-2.63)

Core 82.10 79.80 67.05 66.92 87.50 82.32 87.71 71.89 78.16 (+0.17)

CART
Full 91.88 88.53 75.51 80.88 68.99 92.77 88.17 64.81 81.44 (+0.00)

KnOTS 79.65 79.73 64.39 58.28 80.42 78.52 86.52 63.24 73.84 (-7.60)

Core 86.02 86.33 72.39 82.82 91.03 85.93 88.46 72.67 83.21 (+1.77)

TIES +Iso-C
Full 84.11 83.07 74.94 76.66 92.88 87.88 88.58 74.61 82.84 (+0.00)

KnOTS 86.44 88.23 78.74 78.94 94.27 87.94 88.62 72.24 84.43 (+1.59)

Core 91.13 90.58 79.53 87.67 86.47 90.46 90.05 72.28 86.02 (+3.18)

DARE-TIES +Iso-C
Full 83.25 81.78 73.03 77.25 86.81 86.78 88.24 74.44 81.45 (+0.00)

KnOTS 87.32 87.78 74.12 81.50 94.21 89.48 88.88 70.87 84.27 (+2.82)

Core 90.84 91.12 79.15 88.14 90.19 90.73 89.92 72.05 86.52 (+5.07)

TSV +Iso-C
Full 86.44 89.07 82.49 84.68 90.76 90.03 87.99 67.98 84.93 (+0.00)

KnOTS 88.47 90.58 77.69 83.91 87.48 90.00 88.76 67.49 84.30 (-0.63)

Core 91.54 91.34 80.24 86.79 87.39 91.51 89.59 71.30 86.21 (+1.28)

CART +Iso-C
Full 88.78 90.43 78.59 87.04 91.96 90.96 89.32 75.18 86.53 (+0.00)

KnOTS 88.72 89.60 80.77 79.84 87.18 89.50 88.38 68.07 84.01 (-2.52)

Core 92.08 92.48 81.22 88.96 89.80 91.97 89.81 73.56 87.49 (+0.96)

Iso-C
Full 86.83 86.94 80.65 77.99 92.09 87.88 88.50 68.69 83.70 (+0.00)

KnOTS 88.27 89.75 78.36 85.41 91.65 90.93 88.85 70.97 85.52 (+1.82)

Core 91.23 90.28 80.28 85.29 89.71 90.96 89.58 70.66 86.00 (+2.30)

E Additional Results

E.1 Per-task evaluation in vision setting for ViT-L/14

We provide in Tab. 8 per-task results vision model merging using the ViT-L/14 backbone. Similarly
to what we observed for other backbones, in this case, performing the merging in Core Space yields
consistent improvements across all methods, resulting in new state-of-the-art results.

E.2 Experiments with Heterogeneous Ranks

In the main paper, we discussed that Core Space merging naturally extends to the heterogeneous rank
setting (Tab. 9). Here we provide additional details.

When tasks are fine-tuned with different LoRA ranks, we horizontally and vertically stack the B(t)

and A(t) matrices across tasks as usual. The resulting aggregate matrices have rank equal to the
dimension of the union of all task subspaces. Performing SVD on these aggregates yields orthonormal
reference bases U ref

B and V ref
A that span the combined subspaces, regardless of how individual task

ranks vary.

Projection into these reference bases followed by task-specific alignment (see Sec. A.1) guarantees
that reconstruction is lossless. This explains why the results in Tab. 9 show that heterogeneous ranks
incur no additional degradation in performance under our framework, whereas baselines that lack
such alignment struggle with mismatched subspace dimensions.

E.3 Extension to VeRA

We also evaluated the applicability of Core Space merging beyond LoRA, specifically on VeRA [21]
(Tab. 10). In VeRA, the decomposition ∆W = ΛbBΛdA differs structurally from LoRA since A and
B are fixed random matrices, and only the scaling vectors Λb,Λd are trainable.

25

Table 9: Normalized accuracies of merged models on the vision tasks with ViT-B/32 with LoRA
mixed ranks 16 (Cars, EuroSAT, MNIST, SVHN) and 64 (DTD, GTSRB, RESISC, SUN397).

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. accuracy 74.00 68.03 99.00 98.00 99.30 93.85 70.85 96.20 -

TA - 81.97 65.83 47.06 51.66 57.18 72.91 89.75 48.37 64.34 (+0.00)

TIES
Full 80.94 64.74 42.01 53.91 55.41 72.16 89.76 49.09 63.50 (+0.00)

KnOTS 82.70 67.08 49.01 55.00 57.39 73.74 90.14 45.97 65.13 (+1.63)

Core 79.74 67.71 41.38 71.86 69.59 75.02 91.43 67.97 70.59 (+7.09)

DARE-TIES
Full 80.81 65.60 41.11 54.89 56.14 72.45 89.74 49.70 63.81 (+0.00)

KnOTS 82.98 67.08 45.57 56.34 62.34 75.65 90.06 53.53 66.69 (+2.88)

Core 80.98 68.80 44.26 68.07 64.43 74.45 91.44 62.99 69.43 (+5.62)

TSV
Full 80.98 67.94 50.95 59.10 64.65 75.82 90.76 53.37 67.95 (+0.00)
KnOTS 82.51 65.91 43.66 48.98 60.52 71.47 89.22 51.29 64.20 (-3.75)

Core 80.46 69.51 51.44 58.33 61.03 76.70 89.37 52.43 67.41 (-0.54)

TIES +Iso-C
Full 78.94 69.90 54.02 53.13 66.83 75.11 90.64 46.63 66.90 (+0.00)

KnOTS 81.42 68.49 60.19 45.09 56.70 70.83 90.43 40.11 64.16 (-2.74)

Core 79.32 75.84 58.66 64.09 80.14 76.76 90.52 55.13 72.56 (+5.66)

DARE-TIES +Iso-C
Full 80.33 70.76 60.98 51.48 61.58 74.16 90.41 47.26 67.12 (+0.00)

KnOTS 82.11 67.71 58.92 41.44 57.92 69.69 90.37 38.79 63.37 (-3.75)

Core 78.75 75.37 58.47 64.98 80.83 77.00 90.49 55.53 72.68 (+5.56)

TSV +Iso-C
Full 76.46 73.65 61.02 56.41 69.02 74.04 90.01 49.12 68.72 (+0.00)

KnOTS 78.88 72.79 66.59 54.61 78.83 72.21 89.03 50.28 70.40 (+1.68)

Core 79.30 78.26 63.94 58.11 77.28 74.40 89.85 50.97 71.51 (+2.79)

Iso-C
Full 78.48 75.61 63.37 63.05 77.14 77.10 90.22 51.50 72.06 (+0.00)

KnOTS 78.92 76.31 56.19 63.50 75.11 77.08 90.53 52.44 71.26 (-0.80)

Core 81.17 79.20 59.71 70.86 81.90 78.93 90.81 56.60 74.90 (+2.84)

Table 10: Normalized accuracies of merged models on the vision tasks with ViT-B/32 with VeRA
rank 16.

Method Space Cars DTD EuroSAT GTSRB MNIST RESISC SUN397 SVHN Avg (∆ Acc)
Abs. Accuracy 62.79 57.07 96.55 90.85 98.60 88.50 62.79 93.10 -

TA - 95.78 77.73 47.26 39.77 49.10 70.61 100.74 37.29 64.78 (+0.00)

TIES
Full 95.53 77.73 44.76 39.07 48.25 69.92 100.58 35.62 63.93 (+0.00)

KnOTS 96.64 77.91 50.13 39.61 50.46 70.52 100.85 35.93 65.26 (+1.33)

Core 97.06 77.73 44.30 41.98 50.35 71.63 100.44 38.95 65.31 (+1.39)

DARE-TIES
Full 94.44 77.73 47.26 42.09 49.82 69.37 100.05 38.28 64.88 (+0.00)

KnOTS 96.52 77.54 52.13 40.88 50.46 70.25 100.06 37.24 65.63 (+0.75)
Core 97.09 77.82 44.27 42.02 50.41 71.75 100.48 38.97 65.35 (+0.47)

TSV
Full 93.35 77.54 45.11 37.44 53.50 69.40 99.70 33.85 63.74 (+0.00)

KnOTS 92.73 78.19 54.85 38.77 56.20 69.10 98.82 34.02 65.33 (+1.59)

Core 93.75 76.51 60.15 37.94 54.32 68.38 98.77 34.63 65.56 (+1.82)

TIES +Iso-C
Full 94.79 77.26 46.84 36.11 48.78 68.19 100.81 34.03 63.35 (+0.00)

KnOTS 94.81 77.26 47.33 35.49 48.67 68.10 100.67 33.74 63.26 (-0.09)

Core 95.43 77.63 50.79 37.14 50.61 69.06 100.62 33.77 64.38 (+1,03)

DARE-TIES +Iso-C
Full 93.82 76.98 46.34 36.80 49.47 68.26 100.44 34.69 63.35 (+0.00)

KnOTS 94.88 77.17 47.37 35.52 48.64 68.13 100.66 33.75 63.27 (-0.08)

Core 94.14 77.26 53.01 37.45 52.90 68.13 100.09 31.80 64.35 (+1.00)

TSV +Iso-C
Full 93.37 76.70 48.29 35.92 51.47 68.11 100.30 34.35 63.56 (+0.00)

KnOTS 92.58 75.30 52.51 36.47 58.16 67.36 99.83 35.43 64.71 (+1.15)

Core 93.57 76.89 63.33 39.27 57.53 68.63 99.18 34.07 66.56 (+3.00)

Iso-C
Full 93.50 77.26 52.05 37.42 49.49 68.06 100.62 34.22 64.08 (+0.00)

KnOTS 94.59 77.35 47.76 35.52 48.73 68.27 100.52 33.68 63.30 (-0.78)

Core 91.77 75.77 63.60 38.53 58.53 67.81 97.67 36.50 66.27 (+2.19)

To apply our method, we absorb the scaling vectors into the low-rank matrices:

B̃ = ΛbB, Ã = ΛdA,

and then treat (Ã, B̃) as if they were standard LoRA components. Since the subsequent steps (stacking,
SVD, projection, and alignment) are agnostic to how A and B were obtained, the derivations in
Sec. A apply without modification.

The empirical results in Tab. 10 confirm this reasoning: Core Space merging consistently outperforms
other approaches even in the VeRA setting, validating that the framework is general to low-rank
adaptation methods beyond LoRA.

26

	Introduction
	Related Work
	Preliminaries
	The Core Space Merging Framework
	Model Merging in Core Space
	No Information Loss in Core Space Representation
	Computational Complexity Analysis

	Experimental Results
	Results
	Analysis

	Conclusion
	No Information Loss in Core Space Representation
	Least Squares Solutions
	Alignment Error Quantification
	Optimal Reference Bases
	Generalization Beyond the T r m, n Assumption

	Computational Complexity Analysis
	Additional Analysis
	High subspace alignment leads to lower interference
	Rank of the merged update matrices

	Additional Experiment Details
	Optimized Pipeline
	Experimental Environment
	Hyperparameter Search
	Code Availability and Pseudocode

	Additional Results
	Per-task evaluation in vision setting for ViT-L/14
	Experiments with Heterogeneous Ranks
	Extension to VeRA

