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Abstract. This work tackles Weakly Supervised Anomaly detection, in
which a predictor is allowed to learn not only from normal examples
but also from a few labeled anomalies made available during training. In
particular, we deal with the localization of anomalous activities within
the video stream: this is a very challenging scenario, as training examples
come only with video-level annotations (and not frame-level). Several
recent works have proposed various regularization terms to address it
i.e. by enforcing sparsity and smoothness constraints over the weakly-
learned frame-level anomaly scores. In this work, we get inspired by
recent advances within the field of self-supervised learning and ask the
model to yield the same scores for different augmentations of the same
video sequence. We show that enforcing such an alignment improves the
performance of the model on XD-Violence.

Keywords: Video Anomaly Detection, Temporal Action Localization,
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1 Introduction

The goal of Video Anomaly Detection is to detect and localize anomalous events
occurring in a video stream. Usually, these events involve human actions such
as abuse, falling, fighting, theft, etc. In the last decades, such a task has gained
relevance thanks to its potential for a video surveillance pipeline. In light of the
widespread presence of CCTV cameras, employing enough personnel to exam-
ine all the footage is indeed infeasible and, therefore, automatic tools must be
exploited.

Traditional approaches leverage low level features [16] to deal with this task,
computed either on visual cues [3, 22] or object trajectories [8, 35]. These tech-
niques – which could suffer and be unreliable in some contexts [20, 32] – have
been surpassed by reconstruction-based approaches [19]: these methods require
a set of normal data to learn a model of regularity; afterward, an example can be
assessed as ”anomalous” if it substantially deviates from the learned model. In
this regard, the architectural design often resorts to deep unsupervised autoen-
coders [45, 55], which may include several strategies for regularizing the latent
space.
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The major recent trend [42] regards the exploitation of weak supervision,
which provides the learning phase also with examples from the anomalous classes.
However, the annotations come in a video-level format: the learner does not know
in which time steps the anomaly will show, but only if it does at least one time.
For such a reason, the proposed techniques often fall into the framework of mul-
tiple instance learning [17, 43, 47], devising additional optimization constraints
that mitigate the lack of frame-level annotations.

In this work, we attempt to complement the existing regularization tech-
niques with an idea from the fields of self-supervised learning and consistency
regularization [6, 15, 41, 48]. In this context, data augmentation is exploited to
generate positive pairs, consisting of a couple of slightly different versions of the
same example. Afterward, the network is trained to output very similar repre-
sentations, in a self-supervised manner (no class labels are required). Similarly,
we devise a data augmentation strategy tailored to sequences and encourage the
network to assign the same frame-level anomaly scores for the elements of each
positive pair. Such a strategy resembles the smoothness constraint often imposed
in recent works; however, while those approaches focus on adjacent time steps,
our approach can randomly span over longer temporal windows.

To evaluate the merits of our proposal, we conduct experiments on the XD-
Violence [47] dataset. We found that the presence of our regularization term
yields remarkable improvements, although being not yet enough to reach state-
of-the-art approaches.

2 Related work

Video Anomaly Detection Traditionally researchers and practitioners exploit
object trajectories [8, 34, 35], low-level handcrafted features [3, 22, 33] (such as
Histogram of Gradients and Histogram of Flows), and connected component
analysis cues [2, 4, 5]. These traditional approaches have proven to be effective
on benchmark datasets, but turn out to be still ineffective when used on a real
domain. This means that these methods do not adapt well to anomalies that
have never been seen before. For this reason, the task of anomaly detection has
recently been approached with deep neural networks.

Most recent works lean towards unsupervised methods [1, 19] usually based
on deep autoencoders. These models leverage the reconstruction error to mea-
sure how much an incoming example conforms to the training set distribution.
Remarkably, the authors of [29] resorted to a variation of this common paradigm:
namely, they proposed an approach that learns the distribution of normal data
by guessing the appearance of future frames. In this respect, the idea was to
compare the actual frame and the predicted one: if their difference is high, then
it is possible to assume that an anomalous event occurred.

While it is easy to label whole videos (e.g., anomaly present or not), the
availability of fine-grained labeled anomalous videos is often scarce. For this rea-
son, weakly supervised methods have seen a great advance. Among these works,
Sultani et al. [42] introduced a new pattern for video anomaly detection termed
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Multiple Instance Learning (MIL), upon which most of the subsequent weakly
supervised methods developed. In this scenario, a positive video (i.e. containing
an anomaly) and a negative one are taken into account at each iteration. These
videos are usually split into segments; the model assigns them an anomaly score
through a sequence of convolutional layers followed by an MLP. The scores are
collected into a positive bag and a negative bag: as in the former, there is at
least an anomaly (while in the latter there are no anomalies) the minimum score
from the positive bag has to be as far as possible from the maximum score of the
negative bag. To impose this constraint, the objective function contains a MIL
ranking loss as well as smoothness and sparsity constraints. Zhou et al. [55] in-
troduced the attention mechanism combined with the MIL approach, to improve
the localization of the anomalies.

Temporal Action Localization The majority of the works dealing with Tem-
poral Action Localization are either fully supervised or weakly supervised. The
former ones can be broadly categorized into one stage [27, 30] and two stages
methods [26, 49, 53]. For the first type, in works such as [27], action boundaries
and labels are predicted simultaneously; in [30] this concept is developed by
exploiting Gaussian kernels to dynamically optimize the temporal scale of each
action proposal. On the other hand, two-stage methods initially generate tem-
poral action proposals and then classify them. A manner to produce proposals is
by exploiting the anchor mechanism [13,18,50], sliding window [40] or combining
confident starting and ending frames of an action [26,28].

Weakly supervised methods have been pioneered by UntrimmedNet [44],
STPN [36] and AutoLoc [39], in which the action instances are localized by
applying a threshold on the class activation sequence. This paradigm has been
recently brought into the video anomaly detection settings in [31,46].

3 Proposed Method

In the following, we present the proposed model and its training objective. The
third part is dedicated to explaining the process of proposal generation, which
consists of a post-processing step grouping adjacent similar scores into contiguous
discrete intervals.

3.1 Model

In our set-up, each video is split into segments of 16 frames, with no overlap
between consecutive segments. To extract video-level features, some works [12,
52] opted for combining 2D-CNNs and Recurrent Neural Networks; instead, we
give each segment to a pre-trained I3D network [10]. Indeed, the authors of [24]
have shown that the I3D features can prove to be effective for video-anomaly
detection, even when a shallow classifier as XGBoost [9,14] is employed for later
classification. In our case, the I3D network is pre-trained on the Kinetics [21]
dataset and not fine-tuned on our target data.
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Fig. 1. Overview of the proposed framework. (left) Augmentation function sampling
two slightly different sequences out of a single one. The original sequence gets split into
windows and for each, we randomly sample a single feature vector. This is done twice
to obtain two sequences XA and XB . (right) Both sequences are separately fed to the
model, obtaining two sequences of attention weights λA and λB , pulled closer together
by the alignment loss.

This way, each example is represented by a variable-length sequence of T
feature vectors X = (x1, x2, . . . , xT ). During training, examples come with a
label y indicating whether an anomalous event appears in that sequence at least
one time. Hence, given a training set of examples {(Xj , yj)}Nj=1 forged in the
above-mentioned manner, we seek to train a neural network f(·; θ) that solves
such a task with the lowest empirical error:

min
θ

1

N

N∑
i=1

BCE(f(Xi; θ), yi) (1)

where BCE(·, ·) stands for the binary cross entropy loss function. For the ar-
chitectural design of f(·; θ), we took inspiration from [36]. It consists of two
main parts, discussed in the following paragraphs: namely, the computation of
attention coefficients and the creation of an aggregate video-level representation.

Attention coefficients The aim of this module is to assign a weight λt ∈
[0, 1] to each element of the input sequence. As explained in the following, these
weights will identify the most salient segments of the video i.e., the likelihood of
having observed an abnormal event within each segment. The module initially
performs a masked temporal 1D convolution [25] to allow each feature vector to
encode information from the past. Such a transformation – which does not alter
the number of input feature vectors – is followed by two fully connected layers
activated by ReLU functions, except for the last layer where a sigmoid function
is employed.

Video-level representation Once we have guessed the attention values, we
exploit them to aggregate the input feature vectors. Such an operation – which
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resembles a temporal weighted average pooling presented in [37] – produces a
single feature vector with unchanged dimensionality; formally:

x =

T∑
t=1

λtxt. (2)

We finally feed it to a classifier g(·), composed of two fully connected layers. The
final output represents the guess of the network for the value of y.

3.2 Training Objective

As mentioned before, we train our network in a weakly supervised fashion i.e.,
only video level labels are provided to the learner. However, to provide a stronger
training signal and to encourage attention coefficients to highlight salient events,
we follow recent works [7,51] and use some additional regularization terms that
encode a prior knowledge we retain about the dynamics of abnormality.

Often, the presence of anomalous activities is characterized by the proper-
ties of sparseness and smoothness. Namely, anomalies appear rarely (i.e., nor-
mal events dominate) and transitions between the two modalities usually occur
throughout multiple frames. Such a peculiarity represents a prior we would like
to enforce over the scores learned by the model: the majority of them should be
close to zero and have similar values for video segments. In formal terms, the
first constraint can be injected by penalizing the l1 norm [11] of the attention
weights, as follows:

Lsp = ∥λ∥1, (3)

while the second one can be carried out by imposing adjacent coefficients to vary
as little as possible:

Lsm =

T−1∑
t=1

(λt − λt+1)
2. (4)

Alignment loss Our main contribution consists in adding a consistency-based
regularization term to the overall objective function. Overall, the idea is to gen-
erate two slightly different sequences out of a single one and, then, to encourage
the model to produce the same attention coefficients for the two inputs.

To do so, we introduce a data augmentation function, shown in Fig. 1, that
allows us to forge different versions XA and XB from the same example X . In
more detail, we split each sequence (x1, x2, . . . , xT ) into fixed-size blocks, whose
length L is a hyperparameter we always set to 3; afterward, we randomly choose
a feature vector within each block.

Once the variants XA and XB have been created, we ask the network to
minimize the following objective function:

La =

T∑
t=1

(λAt − λBt )
2, (5)
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where λA and λB are respectively the attention coefficients computed by the
network for XA and XB . With this additional regularization term, we seek to
enforce that not only adjacent time-steps should have the same weight, but also
those lying within a wider temporal horizon.

Overall objective Finally, the objective function will be:

L ≡ Lcl + αLsp + βLsm + γLa, (6)

where the parameters α, β, and γ give different weights to each loss component
and Lcl is the binary cross entropy loss function.

3.3 Temporal Proposal

During inference, we refine the anomaly scores by applying a post-processing
step. Usually, two segments considered paramount by the network are interleaved
by “holes”, mostly due to noisy acquisitions or poor representations. The purpose
of this phase is therefore to merge temporally close detections in a single retrieved
candidate. In particular, as done in [54], we initially take out from the candidate
set all those time-steps whose corresponding attention scores are lower than a
certain threshold (in our experiments, < 0.35). The remaining non-zero scores
will be used to generate the temporal proposal.

To generate the proposals, we do not use the rough coefficients, but instead
a more refined version. In particular, we compute a 1-d activation map in the
temporal domain, called Temporal Class Activation Map (T-CAM) [54], which
indicates the relevance of the segment t in the prediction of one of the two classes
involved (normal vs anomalous). Each value at of such activation map is com-
puted as at = g(xt), i.e., the guess of the classifier g(·) (introduced in Sec. 3.1)
if masking the contributions of all time-steps except the t-th one. Furthermore,
we extract the Weighted T-CAM, which combines the attention weight and the
T-CAM activation values, i.e., ψt = λt · at. This operation let us emphasize the
most important features for generating the proposal.

The last operation involves interpolating the weighted scores in the tempo-
ral axis and taking the bounding box that covers the largest connected compo-
nent [36] to generate the final proposal [54]. The anomaly score for each proposal
is then computed as:

tend∑
t=tstart

= λt ·
at

tend − tstart − 1
, (7)

where tstart and tend represent the beginning and the ending of a single proposal.

4 Experiments

We conduct our experiments on the XD-Violence Dataset [47], a multi-modal
dataset that contains scenes from different sources such as movies, sports, games,
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Video Level Segment Level Frame Level Proposal Frame Level

Align Loss AUC% AP% AUC% AP% AUC% AP% AUC% AP%

- 97.91 98.36 84.39 66.75 85.14 68.01 84.57 65.96

✓ 97.79 98.28 85.49 66.87 90.23 71.68 85.65 66.05
Table 1. For different levels and metrics, results of our model with and without the
proposed align loss. There is an improvement on almost all metrics when leveraging
the proposed term.

Supervision Method AP%

Unsupervised

SVM baseline 50.78

OCSVM [38] 27.25

Hasan et al. [19] 30.77

Weakly Supervised

Ours (no align loss) 68.01

Ours 71.68

Sultani et al. [42] 75.68

Wu et al. [47] 75.41

RTFM [43] 77.81
Table 2. Comparison with recent works. We report the frame-level AP score on XD-
Violence for both unsupervised and weakly-supervised methods. All the competitors
exploit the I3D network for extracting features from RGB frames.

news, and live scenes. It holds a great variety concerning the devices used for
video acquisition; indeed, the examples were captured by CCTV cameras, hand-
held cameras, or car driving recorders. There are 4754 videos for a total of
217 hours: among all these, 2405 are violent videos and 2349 are non-violent.
The training set consists of 3954 examples; the test set, instead, features 800
ones, split into 500 violent and 300 non-violent videos. The dataset comes with
multiple modalities such as RGB, optical flow, and audio; however, we restrict
our analysis only to the RGB input domain.

XD-Violence also comes with segment-level ground truth labels; however,
we only use video-level annotation during training, conforming to the weakly
supervised setting. Differently, we exploit both the segment-level and frame-
level annotations during the test phase, thus evaluating the model’s capabilities
for fine-grained localization.

Metrics We used the most popular metrics in anomaly detection settings,
namely the Area Under Receiver Operating Characteristic Curve (AUC) and the
Area Under Precision-Recall Curve (AP). While the AUC tends to be optimistic
in the case of unbalanced datasets, the AP gives a more accurate evaluation of
these scenarios.
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Fig. 2. Qualitative examples of the capabilities of our model to perform anomaly local-
ization. The temporal proposal scores are indicated with a blue line, while the weighted
T-CAM scores and the ground truth are shown in green and red respectively.

We assess the performance of the classification head by providing these two
metrics at the video level; therefore, we use the attention scores, their interpo-
lation, as well as the temporal proposals to assess the other grains.

Training Details We use the Adam optimizer [23] with a learning rate of
10−4 for the first 10 epochs and 10−5 for the remaining 40 epochs. The hyper-
parameters for the loss components are set to: α = 2×10−8, β = 0.002, γ = 0.5.
The threshold for taking out the low weighted T-CAM scores is set to 0.35; the
batch size equals 8.

Results Tab 1 reports the comparison between the baseline approach with and
without the proposed alignment objective. It can be observed that its addition
leads to a remarkable improvement in most of the metrics. In particular, we have
a gain of about 1% in AUC for segment and frame level metrics, while the AP
remains almost the same. The greatest improvement subsists for the temporal
proposal metric, where we gain 5 points in AUC and around 4 points in AP. The
video level metrics remain approximately the same but still very high.

When comparing our approach with other recent works (see Tab 2), it can
be seen that it outperforms the unsupervised state-of-the-art methods; however,
it is in turn surpassed by the weakly supervised ones. We conjecture that such
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a gap is mainly due to the bag representations inherent in these approaches,
which could confer superior robustness; therefore, we leave to future works the
extension of our idea to these methods.

Qualitative analysis Fig 2 presents several qualitative results, showing two
fight scenes in the first row, and a riot and an explosion in the second one.
We notice that the scores rightly increase when an anomalous action begins.
Unfortunately, they remain always close to the uncertainty regime (assuming a
score around 0.5) and never tend towards discrete decisions. In future works, we
are going to address also this issue.

Looking at the original videos, we could also explain why the scores yielded
by the model are noisy and subject to local fluctuations. Indeed, as sudden
characters or camera’ movements are likely to intervene, they are mistaken for
real anomalies by the model, which is susceptible to these visual discontinuities
due to the lack of segment-level annotations during training. Differently, when
relying on the entire video sequence, the model can conversely recognize them
correctly.

5 Conclusions

This work proposes a novel strategy to learn effective frame-level scores in weakly
supervised settings when only video-level annotations are made available to the
learner. Our proposal – which builds upon recent advances in the field of self-
supervised learning – relies on maximizing the alignment between the attention
weights of two different augmentations of the same input sequence. We show that
a base network equipped also with other common regularization strategies (e.g.
sparsity and smoothness) brings even more improvements. We found that it is
not enough to achieve state-of-the-art performance; however, we leave aside for
future works a comprehensive investigation of its applicability to more advanced
architectures.
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