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Anomalous Frames

Time axis

* Video Anomaly Detection (VAD) is the task of detecting anomalous
(human) activities in videos.

Recent popular approaches are weakly supervised, in which videos are labeled
at video level.
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32 frames 32 frames 32 frames 32 frames 32 frames 32 frames

Videos get split in 32 frames clips.

Standard video split: Every clip gets processed by the model.

In weakly-supervised methods, clips from anomalous videos are
grouped into positive bags, while normal ones into negative bags.



=cc\V #®)Almage™

TEL AVIV 2022 University of Modena and Reggio Emilia

Positive Pozgg/reegag
bag Features
(=
I 09
— ’ 0,7
:E Feature ﬂ 08 07 Cog)
: Extractor :  Classifier 06 NN
=\ ﬂ I
| : |
| .
|
= =7 ;
‘ CTTTTTTTTT T o 0,1
— 7 s
e’/ E 015 0'2 ’
: 0,4
= 7 03
Negative Negative bag

e scores



Custom Sampling =ccV/ :)Almage

TEL AVIV 2022 rsity of Modena and Reggio Emilia

32 frames 32 frames 32 frames

Y
Videos get split in 32 frames clips.

Custom sampling: We sample only one clip
from every window of three clips.
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Attention Module
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L=Ly+ Loy +Ley+ Ly



Objective Function =cc\/ DAImage

TEL AVIV 2022 rsity of Modena and Reggio Emilia

L =L+ L + Ly + L,

Classifier
output

1
Ly =BCE(f(X)y:)

True video label

The classification loss is a binary cross-entropy at video-level.

This is used to ensure the model can recognize if a video contains anomalies or not.
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L =L+ Lsm|+ Lsy + L,

Loy =BCE(f(X),y:)

= Xi=i (A = A¢41)?

The smooth loss impose adjacent attention coefficients to vary as little as possible.
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L=_Ley+ Loy HLspl+ Ly

Loy =BCE(f(X),y:)
= Y11 (A — A1)’
Lsp — ” At ”1

The sparsity loss penalizes the £; norm of the attention weights.
This reflects the rarity of the anomalies in videos.
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L=Le+ Lo+ Ly HLy)

Loy =BCE(f(X),y:)
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The alignment loss is a consistency-based regularization term.
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1. Sample two slightly different version of the video. [X %] x < <
2. Classify them and extract the attention weights of A\ mopeL / vopeL / X
the clips. ATTENTION °
WEIGHTS

3. The attention weights of the two sampling should A4 AB
be close together.

With this additional regularization term we enforce
smoothness over a wider temporal horizon.

T 5
Ly = 2 (’11t4 — /1?)
t=1
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AUC%
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» Alignment loss allows to learn effective frame-level scores in weakly supervised settings.
* A base network equipped also with other common regularization techniques brings even
more imporvements.

Code: github.com



https://github.com/aimagelab/Consistency-based-Self-supervised-Learning-for-Temporal-Anomaly-Localization
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