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Video Anomaly Detection

• Video Anomaly Detection (VAD) is the task of detecting anomalous 
(human) activities in videos.

• Recent popular approaches are weakly supervised, in which videos are labeled 
at video level.
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Standard video split: Every clip gets processed by the model.

In weakly-supervised methods, clips from anomalous videos are
grouped into positive bags, while normal ones into negative bags.

Standard video split
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Videos get split in 32 frames clips.
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Custom sampling: We sample only one clip 
from every window of three clips.

Custom Sampling
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Videos get split in 32 frames clips.
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Objective Function
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Objective Function

The classification loss is a binary cross-entropy at video-level.

This is used to ensure the model can recognize if a video contains anomalies or not.

ℒ𝑐𝑐𝑐𝑐 = BCE 𝑓𝑓 𝒳𝒳𝑖𝑖 ,𝑦𝑦𝑖𝑖
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Objective Function

ℒ𝑠𝑠𝑚𝑚 = ∑𝑡𝑡=1𝑇𝑇−1 𝜆𝜆𝑡𝑡 − 𝜆𝜆𝑡𝑡+1 2

The smooth loss impose adjacent attention coefficients to vary as little as possible.

ℒ𝑐𝑐𝑐𝑐 = BCE 𝑓𝑓 𝒳𝒳𝑖𝑖 ,𝑦𝑦𝑖𝑖
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Objective Function

The sparsity loss penalizes the ℓ1 norm of the attention weights.
This reflects the rarity of the anomalies in videos.

ℒ𝑐𝑐𝑐𝑐 = BCE 𝑓𝑓 𝒳𝒳𝑖𝑖 ,𝑦𝑦𝑖𝑖

ℒ𝑠𝑠𝑚𝑚 = ∑𝑡𝑡=1𝑇𝑇−1 𝜆𝜆𝑡𝑡 − 𝜆𝜆𝑡𝑡+1 2

ℒ𝑠𝑠𝑠𝑠 = ∣∣ 𝜆𝜆𝑡𝑡 ∣∣1



ℒ = ℒ𝑐𝑐𝑐𝑐 + ℒ𝑠𝑠𝑠𝑠 + ℒ𝑠𝑠𝑠𝑠 + ℒ𝑎𝑎

Objective Function

ℒ𝑠𝑠𝑠𝑠 = ∣∣ 𝜆𝜆𝑡𝑡 ∣∣1

ℒ𝑐𝑐𝑐𝑐 = BCE 𝑓𝑓 𝒳𝒳𝑖𝑖 ,𝑦𝑦𝑖𝑖

ℒ𝑠𝑠𝑚𝑚 = ∑𝑡𝑡=1𝑇𝑇−1 𝜆𝜆𝑡𝑡 − 𝜆𝜆𝑡𝑡+1 2

ℒ𝑎𝑎 = �
𝑡𝑡=1

𝑇𝑇
𝜆𝜆𝑡𝑡𝐴𝐴 − 𝜆𝜆𝑡𝑡𝐵𝐵

2

The alignment loss is a consistency-based regularization term.
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Alignment Loss
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1. Sample two slightly different version of the video.

2. Classify them and extract the attention weights of 
the clips.

3. The attention weights of the two sampling should 
be close together.

With this additional regularization term we enforce
smoothness over a wider temporal horizon.



Quantitative Results



Qualitative Results



Conclusions

• Alignment loss allows to learn effective frame-level scores in weakly supervised settings.
• A base network equipped also with other common regularization techniques brings even 

more imporvements.

Code: github.com

https://github.com/aimagelab/Consistency-based-Self-supervised-Learning-for-Temporal-Anomaly-Localization
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