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Abstract

End-to-end transformer-based trackers have achieved remarkable performance on
most human-related datasets. However, training these trackers in heterogeneous
scenarios poses significant challenges, including negative interference – where the
model learns conflicting scene-specific parameters – and limited domain gener-
alization, which often necessitates expensive fine-tuning to adapt the models to
new domains. In response to these challenges, we introduce Parameter-efficient
Scenario-specific Tracking Architecture (PASTA), a novel framework that com-
bines Parameter-Efficient Fine-Tuning (PEFT) and Modular Deep Learning (MDL).
Specifically, we define key scenario attributes (e.g., camera-viewpoint, lighting
condition) and train specialized PEFT modules for each attribute. These expert
modules are combined in parameter space, enabling systematic generalization to
new domains without increasing inference time. Extensive experiments on MOT-
Synth, along with zero-shot evaluations on MOT17 and PersonPath22 demonstrate
that a neural tracker built from carefully selected modules surpasses its monolithic
counterpart. We release models and code.

1 Introduction

Video Surveillance is essential for enhancing security, supporting law enforcement, improving safety,
and increasing operational efficiency across various sectors. In this respect, Multiple Object Tracking
(MOT) is a widely studied topic due to its inherent complexity. Nowadays, MOT is commonly tackled
with two main paradigms: tracking-by-detection (TbD) [3, 51, 61, 28, 43, 38, 29] or query-based
tracking [56, 58, 63, 12] (i.e., tracking-by-attention). Although tracking-by-detection methods have
proven effective across multiple datasets, their performance struggles to scale on larger datasets due
to the non-differentiable mechanism used for linking new detections to existing tracks. To this end,
query-based methods are being employed to unify the detection and association phase.

Nevertheless, training such end-to-end transformer-based methods presents significant challenges,
as they tend to overfit specific scenario settings [37, 55] (e.g., camera viewpoint, indoor vs. outdoor
environments), require vast amounts of data [63], and incur substantial computational costs. Moreover,
these methods degrade under domain shifts, struggling to outperform traditional TbD methods.

In light of these challenges, we propose a novel framework, Parameter-efficient Scenario-specific
Tracking Architecture (PASTA), aimed at reducing the computational costs and enhancing the transfer
capabilities of such models. Leveraging Parameter Efficient Fine-Tuning (PEFT) techniques [16, 34]
can significantly decrease computational expenses and training time, starting with a frozen backbone
pre-trained on synthetic data. However, the model may still experience negative interference [49,
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Figure 1: Given a scene, we select the modules corresponding to its attributes, such as lighting and
indoor/outdoor. These modules are composed and then deployed, yielding a specialized model.

50, 37, 55], a phenomenon for which training on multiple tasks (or scenarios) causes the model to
learn task-specific parameters that may conflict. For instance, if the model learns parameters tailored
for an indoor sports activity, it could detrimentally affect its performance on a novel outdoor scene
depicting people walking. To this end, inspired by Modular Deep Learning (MDL) [35], we employ
a lightweight expert module for each attribute, learn them separately, and finally compose them
efficiently [17]. This approach – depicted in Fig. 1 – is akin to a chef preparing a pasta dish. Each
ingredient (i.e., module) is prepared individually to preserve its unique flavor and then combined
harmoniously to create a balanced dish. Moreover, as pasta must be perfectly al dente to serve as the
ideal base for various sauces, the pre-trained backbone should be robust and well-tuned to serve as
the foundation for the modules. These modules must be combined effectively to ensure the model
performs well across diverse scenarios. Conversely, the result will be sub-optimal if incompatible
modules are mixed – analogous to combining ingredients that do not complement each other. Indeed,
combining contrasting modules can lead to ineffective handling of diverse tasks.

Notably, such a modular framework brings two advantages: it avoids negative interference and
enhances generalization by leveraging domain-specific knowledge. Firstly, starting from a pre-trained
backbone, we train each module independently to prevent parameter conflicts, ensuring that gradient
updates are confined to the relevant module for the specific scenario. This assures that parameters
learned for one attribute do not negatively impact the performance of another. Secondly, the modular
approach allows us to exploit domain knowledge fully, even when encountering a novel attribute
combination. Indeed, as shown in Sec. 5.5, our approach is effective even in a zero-shot setting (i.e.,
without further fine-tuning on the target dataset). Moreover, the selection of the modules may be
done automatically or in a more realistic production environment by video surveillance operators.

To evaluate our approach, we conduct extensive experiments on the synthetic MOTSynth [10] and the
real-world MOT17 [8] and PersonPath22 [44] datasets. The results show that PASTA can effectively
leverage the knowledge learned by the modules to improve tracking performance on both the source
dataset and in zero-shot scenarios. To summarize, we highlight the following main contributions:

• We propose PASTA, a novel framework for Multiple Object Tracking built on Modular Deep
Learning, enabling the fine-tuning of query-based trackers with PEFT techniques.

• By incorporating expert modules, we improve domain transfer and prevent negative interfer-
ence while fine-tuning MOT models.

• Comprehensive evaluation confirms the validity of our approach and its effectiveness in
zero-shot tracking scenarios.

2 Related works

Multiple Object Tracking. The most widely adopted paradigm for Multiple Object Tracking (MOT)
is tracking-by-detection (TbD) [3, 51, 61, 28, 43, 38]. First, an object detector (e.g., YOLOX [14])
localizes objects in the current frame. Next, the association step matches detections to tracks from
the previous frame by solving a minimum-cost bipartite matching problem, with the association cost
defined in various forms (e.g., IoU [3, 61], GIoU [40], or geometrical cues [29, 33]). This pairing
typically occurs immediately after propagating the previous tracks to the current frame using a motion
model (e.g., Kalman Filter [19]). Notably, methods following such paradigm have succeeded on
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complex human-related MOT benchmarks [8, 9, 47, 44]. In TbD, the detection and data-association
steps are equally crucial to accurately localizing and tracking objects. Recent works [65, 1] have
attempted to unify these steps; however, progress toward a fully unified algorithm was constrained by
a significant limitation – the data association process (e.g., the Hungarian algorithm [20]) is inherently
non-differentiable. An initial effort was made by Xu et al. [53] that proposed a differentiable version of
the Hungarian algorithm, later advanced by end-to-end transformer-based trackers [31, 58, 63, 56, 13].

However, transformer-based trackers (also known as tracking-by-attention) require large amounts of
data to achieve decent generalization capabilities [58, 31]. Due to the data scarcity in MOT, these
models often overfit to the specific domain they were trained on, which hampers their ability to
generalize to different domains [17, 21, 37].

Modular Deep Learning (MDL). Considering recent trends in the field of deep learning, state-
of-the-art models have become increasingly larger. Consequentially, fine-tuning these models has
become expensive; concurrently, they still struggle with tasks like symbolic reasoning and temporal
understanding [35]. Recent learning paradigms based on Modular Deep Learning (MDL) [35]
can address these challenges by disentangling core pre-training knowledge from domain-specific
capabilities. By applying modularity principles, deep models can be easily edited, allowing for the
seamless integration of new capabilities and the selective removal of existing ones [26, 36].

Specifically, lightweight computation functions named modules are employed to adapt a pre-trained
neural network. To do so, several fine-tuning techniques could be used to realize these modules,
such as LoRA [16], (IA)3 [25], and SSF [23]. These multiple modules can be learned on different
tasks such that they can specialize in different concepts [32]. At inference time, not all modules have
to be active at the same time. Instead, they can be selectively utilized as needed, either based on
prior knowledge of the domain or dynamically in response to the current input. To establish which
modules to activate, it is common practice to rely on a routing function, which can be either learned
or fixed. Finally, the outputs of the selected modules are combined using an aggregation function. To
minimize inference costs, this process is usually performed in the parameter space rather than the
output space, an activity often referred to as model merging [54]. Specifically, a single forward pass is
performed using weights generated by a linear combination of those selected by the routing function.

Domain adaptation and open-vocabulary approaches in MOT. Currently, domain adaptation tech-
niques have only been applied to tracking-by-detection methods, with GHOST [43] and DARTH [42]
serving as notable examples. In particular, GHOST adapts the visual encoder employed to feed
the appearance model by updating the sufficient statistics of the Batch Normalization layers during
inference. In contrast, our approach regards tracking-by-attention approaches and adapts the entire
network. Moreover, DARTH employs test-time adaptation (TTA) [24] and Knowledge Distillation,
requiring multiple forward passes and entire sequences, making it computationally heavy and less
practical for real-time use. In contrast, our method is entirely online and requires only basic target
scene attributes, with no further training during deployment.

Recent advances in zero-shot tracking have focused on open-vocabulary tracking, where the model
can track novel object categories by prompting it with the corresponding textual representation. In
this respect, methods like OVTrack [22] and Z-GMOT [48] leverage CLIP [39] and language-based
pre-training, while OVTracktor [7] extends tracking to any category. Our method does not use
open-vocabulary models but emphasizes domain knowledge transfer in end-to-end trackers.

3 Preliminaries

Efficient fine-tuning. Given the substantial size of recent vision backbones, often consisting of
hundreds of millions of parameters, adapting them to new scenarios is computationally expensive,
both in terms of time and memory requirements. To tackle the above problems, Parameter Efficient
Fine-Tuning (PEFT) started to take place in recent literature. Among these methods, Low-Rank
Adaptation (LoRA) [16] excels at such purpose. Specifically, LoRA adapts a pre-trained weight
matrix θ0 ∈ Rd×k, with d and k being the dimensions of the matrix, by leveraging a low-rank
decomposition θ0 + ∆θ = θ0 + BA, where B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k). During
training, θ0 is kept frozen, while the smaller A and B matrices are instead trainable, making the
process highly efficient. The forward pass becomes h = θ0x+BAx, where x are the input features.
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Figure 2: Overview of our modular architecture. A domain expert selects PEFT modules based
on sequence attributes such as lighting and camera movement. These selected modules are then
composed and applied to each model layer, adapting the backbone and encoder-decoder architecture.

Query-based Multiple Object Tracking. The underlying backbone of our transformer-based tracker
follows the structure of [58]. In a nutshell, such a query-based model forces each query to recall
the same instance across different frames. Specifically, we leverage an end-to-end trainable tracker
built upon the Deformable DETR [6] framework conditioned by the image features extracted with a
convolutional backbone (i.e., ResNet [15]). Following [63], we further condition the DETR decoder
with a set of detections from an external detector network and a shared learnable query.

At time t = 0, new proposals are generated from the objects detected in the scene. These proposals
are then updated through self-attention and interact with image features via the deformable attention
layer. The final prediction output is the summation of the initial anchors and the predicted offsets.
For subsequent frames (t > 0), track queries generated from the previous frame are concatenated
with learnable proposal queries of the current frame. Moreover, previous predictions are integrated
with current proposals to establish new anchors for the incoming frame. We refer the reader to the
original paper [63] for further details. It is noted that the flexibility of this architecture allows for the
seamless integration of techniques based on modularity.

4 Method

We herein present PASTA, depicted in Fig. 2, a novel approach to Multiple Object Tracking that
leverages PEFT modules to enable attribute-specific module specialization and reuse. This approach
allows for the dynamic configuration of an end-to-end tracker by selecting the appropriate modules
for each input scene, fully leveraging heterogeneous pre-training while avoiding negative transfer.

Attribute-based modularity. We devise a set of learnable modules to fine-tune each layer of our
query-based tracker. Each module is related to an attribute: as shown in Fig. 3, we define N = 5
attributes, namely lighting, viewpoint, occupancy, location, and camera motion, and provide a tailored
module for each discrete value these attributes take (see Sec. 5.3 for details). For instance, the location
attribute has indoor and outdoor modules. At inference time, prior knowledge about the input scene
is used to determine the appropriate value for each attribute, which in turn selects the corresponding
modules from the “inventory”, denoted as M .

Since the base model [63] relies on heterogeneous layers – namely, convolutional (e.g., ResNet) and
attention-based blocks (e.g., Deformable DETR) – we employ two different strategies to fine-tune the
modules. Specifically, after each convolutional layer of the ResNet backbone, we apply a strategy
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Figure 3: Examples of surveillance scenes and their corresponding attributes used by PASTA.

that learns channel-wise scale and shift parameters; for each layer of Deformable DETR, instead, we
employ LoRA-based fine-tuning at each linear layer. In formal terms, considering each convolutional
layer of the ResNet backbone, we deploy |M | pairs {γm, βm}|M |

m=1 of learnable vectors γ, β ∈ RC ,
where C is the number of the output channels. For each linear layer l of the encoder-decoder structure
underlying Deformable DETR, we devise |M | pairs {Am, Bm}|M |

m=1 of learnable LoRA matrices.

During training, we start with the pre-trained weights and integrate all the modules while keeping the
original parameters frozen. To prevent negative interference, we optimize each module independently,
randomly sampling one attribute at a time and updating only the corresponding module at each
training iteration. By the end of the training process, we obtain a set of specialized parameters
(experts), which can be seamlessly merged during inference to improve overall tracking performance.

Routing through Domain Expert. During inference, two essential steps are required to exploit the
learned modules: routing and aggregation. With multiple modules available from the inventory M , a
routing strategy is required to determine the modules that should be active. To make this selection, we
draw on what is known in the literature as expert knowledge [52, 35] (or “Domain Expert” in Fig. 2).
In real-world applications such as video analytics, the expertise guiding the selection can come from
a video surveillance operator or human analyst, who configures the appropriate modules to reflect
domain- and scene-specific settings, such as camera perspective, lighting conditions, and other critical
details. This approach allows users to optimize the tracking module for their unique contexts without
extensive retraining. Additionally, the modular nature of the system enables easy integration of new
modules to address emerging attributes or scenarios.

Relying on Domain Expert to select attributes is a grounded practice in real-world applications. For
instance, the camera’s mounting perspective and whether the scene is indoors or outdoors are typically
known factors in fixed-camera scenarios. Additionally, automatic approaches can be envisioned to
minimize human intervention further. For example, lighting conditions can be inferred by analyzing
brightness levels, and a detector can count objects of interest in the scene, classifying crowd density.

Modules composition. In the final step, we aggregate the selected modules (“Modules Composition”
in Fig. 2) and incorporate the result into the pre-trained tracker to create an expert model. Since
these modules have been obtained by fine-tuning from θ0, each module θ⋆ corresponds to a specific
displacement τ⋆ = θ⋆ − θ0 in parameter space relative to the initial pre-training parameters θ0. This
displacement is known as the task vector [18]. The final composed model f(·;θc) is defined as:

f(·;θc) where θc = θ0 +
∑N

i=1 λiτi,
∑

i λi = 1 and τi ∈ M. (1)

When λi =
1
N , the formula simplifies to the average of the task vectors corresponding to each attribute.

We employ this straightforward strategy for λi, giving equal weight to all attributes. However,
considering the task vector τi associated with the i-th attribute, we employ a more sophisticated
approach. If there are no domain shifts during inference (i.e., both training and testing occur on the
same dataset, such as MOTSynth), the task vector τi is simply set to the displacement τ⋆ produced
by the expert module selected by the Domain Expert. In contrast, when domain shifts are present
(e.g., training on MOTSynth and testing on MOT17), we adopt a soft strategy that considers all the
modules in the inventory associated with the relevant attribute. In doing so, we follow the insights
from [59], where the authors demonstrated that scenarios with shifting tasks benefit from richer
representations than those derived from a single optimization episode.

Specifically, given the i-th attribute, let R(i) be the set of its modules. We recall that each attribute
admits multiple discrete values (e.g., R(occupancy) = {“low”, “medium”, “high”}), and different
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attributes may have different cardinalities (e.g., |R(occupancy)|= 3 and |R(lighting)|= 2, as detailed
in Sec. 5.3). Building on this, we employ soft routing to create the corresponding task vector,
assigning the largest portion of the cake, e.g. ρ = 0.80, to the module selected by the Domain Expert.
The remaining modules are weighted by (1− ρ)/(|R(i)|−1), ensuring that the total sum equals 1.
For example, considering those layers fine-tuned with the LoRA, the corresponding task vector is
computed as:

τi =
∑

m∈R(i) λ̄mBmAm, where λ̄m =

{
ρ if m is selected,

1−ρ
|R(i)|−1 otherwise.

(2)

Note that when ρ = 1, the soft strategy becomes hard, meaning that only the module selected by
Domain Expert is utilized. By applying the formula above to all attributes, we obtain N task vectors,
which we aggregate following Eq. (1).

Similarly, we apply channel-wise scale and shift [23] operations to adapt each backbone layer.
Formally, given the output F of a convolutional layer, the i-th module applies a scale & shift
operation to obtain the edited F̂i, such that F̂i = γi ⊙F + βi with ⊙ denoting the Hadamard product.
At inference time, we combine the output of different scale & shift modules by noting that

F̂ =
∑N

i=1 λi(γi ⊙ F + βi) =
∑N

i=1 λi(γi ⊙ F ) + λiβi = (
∑N

i=1 λiγi)⊙ F +
∑N

i=1 λiβi, (3)
which means that parametrizing the scale & shift layer with a simple weighted average effectively
results in averaging the outputs of the corresponding individual layers. The formula above applies to
the in-domain setting but can be easily generalized to the soft routing scheme outlined by Eq. (2).
Eventually, as discussed in [23], the scale & shift layer can be absorbed into the previous projection
layer, thus ensuring that the inference process incurs no additional computational costs. The same
re-parametrization trick can be employed to extract the task vector underlying scale & shift fine-tuning
(refer to appendix A for additional notes).

5 Experiments

5.1 Datasets

MOTSynth [10] is a large synthetic dataset for pedestrian detection and tracking in urban scenarios,
generated using a photorealistic video game. It comprises 764 full HD videos, each 1800 frames long,
showcasing various attributes. In our experiments, following [29], we reduced the test sequences to
600 frames each and further split the training set to extract 48 validation sequences, shortened to 150
frames, for validation during training.

PersonPath22 [44] is a large-scale pedestrian dataset consisting of 236 real-world videos featuring
longer occlusions and more crowded scenes. It is divided into 138 training videos and 98 test videos.

MOT17 [8] is a well-known benchmark, containing 7 sequences for training and 7 for testing, with
different image resolutions, featuring crowded street scenarios with both static and moving cameras.

5.2 Experimental setting

We evaluate our proposed PASTA on both in-domain and out-of-domain scenarios. For the in-
domain evaluation, we train and test PASTA on the MOTSynth synthetic dataset (Sec. 5.4) using
expert modules in a domain-specific context. As a baseline, we train [63] on MOTSynth without using
modules, referring to this model as MOTRv2-MS. For the out-of-domain evaluation, we conduct a
synth-to-real zero-shot experiment on MOT17 and PersonPath22 (Sec. 5.5). Starting from training on
MOTSynth, we test PASTA on these datasets without additional training, showcasing its ability to
generalize under non-identically distributed domains. Finally, we present a series of ablation studies
in Sec. 6 to take a closer look at the effectiveness of our method.

Competing trackers and metrics. In addition, we report the performance of other notable methods,
including strong tracking-by-detection baselines such as ByteTrack [61] and OC-Sort [5]. We also
include evaluations of query-based trackers, such as TrackFormer [31] and MOTRv2 [63] (see
MOTRv2-MS). To compare their performance, we employ five metrics, ordered from detection
to association, as recommended by [42]. These metrics are DetA [27], MOTA [2], HOTA [27],
IDF1 [41], and AssA [27]. For the PersonPath22 dataset, we use their official metrics, MOTA and
IDF1, supplemented by FP (false positives), FN (false negatives), and IDSW (identity switches).
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Table 1: Evaluation on MOTSynth test set. |Θ| is the number of trainable parameters.

|Θ| HOTA↑ IDF1↑ MOTA↑ DetA↑ AssA↑
SORT [3] - 46.0 55.7 50.9 49.9 42.8
ByteTrack [61] - 45.7 56.4 61.8 50.1 41.9
OCSort [5] - 46.9 56.8 59.1 48.7 45.6
TrackFormer [31] 44M 41.3 49.9 47.7 44.4 40.6
MOTRv2-MS 42M 52.4 56.6 61.9 56.4 49.0
PASTA (Ours) 15M 53.0 57.6 62.0 56.2 50.4

5.3 Implementation details

We initialize our models using the pre-trained weights from DanceTrack [47], as provided by
the authors of [63]. We employ YOLOX [14] as the auxiliary detector, exploiting weights from
ByteTrack [61]. To provide a shared initialization for both PASTA and MOTRv2-MS training, we
train a bootstrap model starting from the DanceTrack pre-train for 28k iterations on the MOTSynth
training set. This bootstrap initialization uses half of the original training sequences from MOTSynth
to align our model with the scenarios represented in the dataset. The learning rates are set to 5×10−5

for the transformer and 1× 10−6 for the visual backbone.

In the second phase, we deploy the PEFT modules to fine-tune the bootstrap model. By excluding
half the sequences during the bootstrap, we make sure that the modules can still learn valuable
features. To ensure a fair comparison, we train each module for a similar number of iterations as
MOTRv2-MS, with approximately 17k iterations. Regarding the encoder-decoder model, we apply
our modularization strategy to every linear layer except those with output dimension less than 128.
For the LoRA hyperparameters, we use r = 16, a weight decay of 0.1, and a learning rate of 3×10−4.
The scale & shift layers employ a learning rate of 1× 10−5 and a weight decay of 1× 10−4. The
training is performed on a single RTX 4080 GPU with a batch size of 1 for both phases. Due to the
small batch size, we accumulate gradients over four backward steps before performing an optimizer
step. Each module is trained independently on the entire MOTSynth training set. With 12 modules,
our model has approximately 15 million trainable parameters.

Attributes. We employ five key attributes to realize our modular architecture: lighting, camera
viewpoint, people occupancy, location, and camera motion. For lighting, we specialize modules
for good and bad lighting conditions. To do so, we threshold the brightness value V of the HSV
representation at 70. The viewpoint attribute includes modules for high, medium, and low camera
angles. We manually annotate this attribute as follows: i) scenes where the camera is parallel to
the ground at or below pedestrian head level are labeled as “low-level”; ii) “high-level” viewpoints
include vertical perspectives or scenes where the camera is positioned very high or far from people;
and iii) “medium-level” includes all other camera angles. For occupancy, we design modules that
reflect the crowd density within the scene: low (up to 10 people), medium (10 to 40 people), and
high (more than 40 people), based on the count of detections with a confidence score above 0.2. The
location attribute differentiates between indoor and outdoor settings. Lastly, the motion attribute
comprises modules for both moving and static cameras, enabling the model to adapt to different
camera movement scenarios. Further details on dataset statistics are provided in appendix C.

5.4 Performance in the in-domain setting

To assess the impact of the negative interference, we conduct several experiments on MOTSynth
(see Tab. 1). Given the wide variety of scenarios in such a synthetic dataset, one can appreciate the
advantages of using specialized modules. Indeed, integrating our modules resulted in an overall im-
provement w.r.t. its fine-tuning counterpart (MOTRv2-MS). Specifically, we observe an improvement
over the association metrics (AssA, IDF1) and the HOTA and MOTA metrics. These enhancements
suggest the benefits of our approach in reducing negative interference during training. By assigning
each module a specific role tailored to particular scenario settings, we achieve improved training
stability through a deterministic selection process guided by a domain expert.

7



Table 2: Zero-shot evaluation on MOT17. PASTA is evaluated in zero-shot by selecting the best
attributes on the source dataset.

HOTA↑ IDF1↑ MOTA↑ DetA↑ AssA↑
fully-trained

SORT [3] 64.3 73.1 70.9 63.3 66.1
OC-SORT [5] 66.4 77.8 74.5 64.1 69.1
TrackFormer [31] – 74.4 71.3 – –
ByteTrack [61] 67.9 79.3 76.6 66.6 69.7
MOTRv2 [63] 66.8 78.9 73.2 62.5 71.4

zero-shot

TrackFormer [31] 51.0 63.9 58.7 51.8 61.2
MOTRv2-MS 62.6 73.0 67.6 60.3 65.5
PASTA (ρ = 1) 63.7 74.1 67.9 60.3 67.9
PASTA (ρ = 0.8) 64.0 74.9 68.1 60.4 68.3

Table 3: Evaluation on PersonPath22 test set. PASTA is evaluated in zero-shot by selecting the best
attributes on the source dataset.

MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓
fully-trained

CenterTrack [65] 59.3 46.4 24 340 71 550 10 319
SiamMOT [45] 67.5 53.7 13 217 62 543 8942
FairMOT [62] 61.8 61.1 14 540 80 034 5095
IDFree [46] 68.6 63.1 9218 66 573 6148
TrackFormer [31] 69.7 57.1 23 138 47 303 8633
ByteTrack [61] 75.4 66.8 17 214 40 902 5931

zero-shot

TrackFormer [31] 39.2 43.3 21 402 126 082 10023
MOTRv2-MS 48.3 53.1 28 483 98 007 7154
PASTA (ρ = 1) 49.7 53.7 18 211 105 611 6321
PASTA (ρ = 0.8) 50.0 53.8 18 038 105 454 6037

5.5 Performance in the out-of-domain setting

By designing distinct modules for various input conditions, we can effectively select the appropriate
modules to handle distribution shifts, such as transitions to a new domain. We assess the benefits
of this ability using synthetic data for training, and then evaluate on new, unseen datasets without
any additional re-training (zero-shot). To do this, we start with our model trained on MOTSynth as
described in Sec. 5.4 and evaluate it on MOT17 (Tab. 2) and PersonPath22 (Tab. 3). While these
datasets share similarities in the attributes we employed, we emphasize that the source dataset is
synthetic and the targets are real-world, resulting in a significant shift.

The results reported in Tab. 2 and 3 show an improvement over the baseline (i.e., MOTRv2-MS),
with +1.4 in HOTA and +1.9 in IDF1 in zero-shot MOT17, and +1.7 in MOTA and +0.7 in IDF1
in PersonPath22. Our approach demonstrates better generalization capabilities, helping close the
gap with fully-trained methods while less computationally demanding. These results indicate that
modularity enhances performance within the source dataset and improves domain generalization,
leading to more reliable and versatile approach for tracking. Furthermore, other than reporting the
results with the standard module selection (considering only the modules present in the scenes, ρ = 1),
we also experiment with the weighted aggregation of all modules (ρ = 0.8) (detailed in Sec. 4).
Interestingly, while the standard strategy shows improvements, the weighted aggregation strategy
yields better performance. This suggests that richer representations, obtained by including multiple
modules per attribute, are more effective for zero-shot scenarios than a single-module approach [59].
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Table 4: Zero-shot evaluation of PASTA trained on MOT17 and tested on PersonPath22. PASTA is
evaluated in zero-shot by selecting the best attributes on the source dataset.

MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓
fully-trained

TrackFormer [31] 69.7 57.1 23 138 47 303 8633
ByteTrack [61] 75.4 66.8 17 214 40 902 5931

zero-shot

MOTRv2-MS 43.9 51.5 8304 119 391 5342
PASTA 46.1 54.6 7895 114 620 4702

Table 5: Ablation study on different module aggregation and selection strategies. (Left) MOTSynth
validation, (Right) Zero-shot on MOT17 validation. The strategy we select is highlighted in yellow.

MOTSynth (val) HOTA↑ IDF1↑ MOTA↑
aggregation

Sum (only selected) 0.65 0.44 -0.69
Weighted avg. (ρ = 0.8) 59.9 66.8 59.6
Mean avg. (ρ = 1.0) 60.1 67.2 59.9

selection

Opposite modules 59.2 66.5 58.7
All modules 59.8 67.0 59.4
Domain Expert 60.1 67.2 59.9

MOT17 (val) HOTA↑ IDF1↑ MOTA↑
aggregation

Sum (only selected) 0.58 0.41 -0.03
Weighted avg. (ρ = 0.8) 64.0 74.9 68.1
Mean avg. (ρ = 1.0) 63.7 74.1 67.9

selection

Opposite modules 62.9 73.9 67.1
All modules 63.1 74.1 67.7
Domain Expert 63.7 74.1 67.9

Evaluating zero-shot real-to-real transfer. In Tab. 4, we present an additional experiment to
evaluate the performance of PASTA in a zero-shot setting, this time using a realistic dataset as the
source, rather than a synthetic one. For comparison, we train MOTRv2 on the MOT17 dataset and
assess its performance on PersonPath22. Our approach showcases superior results compared to
the fine-tuned MOTRv2, highlighting that leveraging modules enhances the model, with improved
generalization capabilities in new and real-world domains.

6 Ablation studies

In Tab. 5, we evaluate the effect of various routing and aggregation strategies in both the in-domain
setting (MOTSynth, left side of Tab. 5) and the zero-shot setting (MOT17, right side of Tab. 5). In
the in-domain scenario, the results show that averaging the modules selected by the Domain Expert,
specifically using Mean avg. (ρ = 1.0), is the most effective strategy. We also experimented with
summation, as proposed by [60], but this method produced bad results, which we impute to the
alteration of weight magnitudes when summing multiple modules. Another noteworthy approach is
the weighted avg., described in Sec. 4, which incorporates all modules, including those not selected.

While using only the selected modules is the optimal strategy in the in-domain scenario, for the
zero-shot case (MOT17), incorporating knowledge from the non-selected modules — specifically,
using Weighted avg. (ρ = 0.8) – enhances tracking performance. This pattern is also consistent when
the domain shift involves evaluation on the PersonPath22 dataset (see appendix E).

Module selection. Should we select only the modules representing the current scenario, as deter-
mined by the Domain Expert approach, or would performance improve by incorporating all available
modules? In Tab. 5, we investigate this matter by comparing these two approaches. To provide a
more comprehensive perspective, we also evaluate a strategy that, in stark contrast to the Domain
Expert, selects the opposite modules (e.g., selecting the outdoor and poor lighting modules when
presented with an indoor, well-lit scene). The lowest performance is observed when using opposite
modules, indicating that using the proper modules provides valuable information about the current
scene. Interestingly, the model still performs relatively well despite using opposite attributes, likely
due to contributions from other modules whose general knowledge of the domain sustains overall
performance. This suggests that modules can assist one another in solving tasks. Moreover, reduced
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Figure 4: IDF1 and MOTA when adding
new attributes on MOTSynth.

Table 6: Opposite modules selection.

HOTA↑ IDF1↑ MOTA↑
No modules 58.2 64.9 55.6
Opposite: only lighting 58.9 66.2 57.8
Opposite: only viewpoint 58.8 65.7 57.0
Opposite: only occupancy 58.6 66.4 59.2
Opposite: only location 58.9 66.0 58.4
Opposite: only camera 58.5 65.6 58.4
Average opposite 58.7 66.0 58.2

Correct modules 60.1 67.2 59.9

Table 7: Performance comparison of our approach without applying fine-tuning and to specific parts
of the architecture (i.e., decoder, encoder, visual backbone).

Fine-tuning applies on HOTA↑ IDF1↑ MOTA↑ DetA↑ AssA↑
none 52.4 56.6 61.9 56.4 49.0
all except the decoder 51.5 56.0 58.9 53.6 49.8
all except the encoder 52.4 56.9 61.2 55.7 49.7
all except the backbone 52.5 57.0 61.5 55.6 49.9
PASTA (all) 53.0 57.6 62.0 56.2 50.4

negative interference – achieved by training each module separately – prevents the modules from
relying on each other and allows them to make unique contributions independently.

Furthermore, in Fig. 4, we illustrate how the incremental addition of specialized modules improves
IDF1 and HOTA metrics, showcasing that greater specialization of the modules gradually enhances
overall performance. For a more detailed analysis, in Tab. 6, we select the opposite modules instead
of the correct one for each attribute. Although the metrics are further reduced, the model performs
well due to its robust pre-training, as indicated by the no modules baseline shown in the table.

Block-wise analysis. In our approach, attribute-related modules are applied to edit the entire network.
However, users may opt to edit selectively specific parts of the architecture, thereby identifying which
components are most critical. In Tab. 7, we conduct an ablation study by excluding our modules
from being applied to varying components of the architecture. The results indicate that not applying
task vectors to the decoder significantly degrades detection and association metrics. We believe
that this degradation can be explained by considering the crucial role of the decoder. The decoder
must indeed gather information from detection, tracking, and proposal queries while simultaneously
integrating visual information from the encoder. Consequently, not adapting the decoder prevents
the architecture from effectively leveraging queries and visual cues. The encoder also contributes
substantially, though to a lesser extent than the decoder, as it primarily refines and contextualizes
visual features from the backbone. Finally, the backbone shows the smallest contribution.

7 Conclusions

In this work, we introduce PASTA, a novel framework that enhances domain generalization in
tracking-by-query methods for Multiple Object Tracking. Our approach features a modular struc-
ture with dedicated modules tailored to different attributes of real-world scenes. These modules
utilize Parameter-Efficient Fine-Tuning techniques, enabling the integration of scene-specific parame-
ters while minimizing computational load. Comprehensive experiments demonstrate that domain-
specialized modules significantly bolster robustness, allowing effective adaptation across domains
without extensive retraining. PASTA further enables camera operators to configure the optimal
module for each unique scenario, ensuring precise adaptation to diverse real-world settings.
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Appendix

A Extracting task vectors from scale & shift layers

In our convolutional backbone, we apply a channel-wise scale and shift [23] operation to adapt each
backbone layer. We provide details on computing the task vector as an increment relative to the base
parameters. Following [23], this is achieved by re-parameterizing the scale and shift as:

F̂ =
(∑

m∈R(i) λ̄mγm

)
⊙ (W0 ∗ h+ b0) +

(∑
m∈R(i) λ̄mβm

)
, (A)

=
(∑

m∈R(i) λ̄mγm ⊙W0

)
︸ ︷︷ ︸

W⋆

∗h+
∑

m∈R(i) λ̄m (γm ⊙ b0 + βm)︸ ︷︷ ︸
b⋆

. (B)

where W0 ∈ RCout×Cin×H×W and b0 ∈ RCout represent the original convolution weights and
bias, Cout is the number of convolution output channels, Cin is the number of convolution input
channels, H and W are the height and width of the kernel, h is the output of the preceding layer,
and ∗ denotes the convolution operation. Notice that, to simplify the notation, we assume to reshape
γm ∈ RCout×1×1×1 and implicitly broadcast in accordance with the dimensions of W0 before
applying the Hadamard product ⊙.

The task vectors τγ = W ⋆ −W0 and τβ = b⋆ − b0 for the scale and shift parameters are defined:

τγ =
(∑

m∈R(i) λ̄mγm ⊙W0

)
−W0, (C)

τβ =
∑

m∈R(i) λ̄m (γm ⊙ b0 + βm)− b0. (D)

By representing our attributes as task vectors and leveraging pre-computed weights, we ensure that
the inference process incurs no additional computational costs.

B Dataset licenses

• MOTSynth is released under the MIT License.
• MOT17 is released under the CC BY-NC-SA 3.0 License.
• PersonPath22 is released under the CC BY-NC 4.0 License.

C Dataset statistics

Tab. A presents statistics on the employed datasets, detailing attributes at both per-sequence and
per-frame levels. We manually annotated these attributes, developing a custom annotation tool that
displays the first frame of each sequence and allows for efficient annotation using keybindings. This
process required minimal effort, involving one annotator for approximately three hours on MOTSynth
and two hours on PersonPath22. As shown in Tab. A, the statistics indicate an imbalance in certain
attributes; to address this, we implemented a custom training sampler to ensure that each module
receives an equal number of backward iterations.

D Forgetting on source dataset

Recently, there has been growing interest in Continual Learning for large pre-trained models, particu-
larly in incrementally fine-tuning these models using parameter-efficient methods [11, 64, 57]. A key
challenge in this process is avoiding the issue of catastrophic forgetting [30], where a model loses
knowledge from earlier training as new tasks are introduced. To this end, we evaluated the extent of
forgetting in the model when using task-specific modules versus training the entire model. Namely,
we start from the PASTA and MOTRv2-MS trained on MOTSynth as in Tab. 1. Then, we further
fine-tune such models on MOT17 and evaluate again on MOTSynth to measure the source-domain
performance after the adaptation. As shown in Tab. B, the modular approach trained on MOT17
is less prone to forget its pre-training on MOTSynth, achieving superior results compared to full
fine-tuning when tested again on MOTSytnh test split. Specifically, our modular approach PASTA
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Table A: Per-sequence and per-frame attributes statistics in PersonPath22, MOT17, and MOTSynth.

PersonPath22 MOT17 MOTSynth

Per-sequence attributes

Total Sequences 236 12 764
Indoor 61 2 57
Outdoor 175 12 707
Camera Low 162 10 479
Camera Mid 68 4 244
Camera High 6 0 41
Moving 60 8 220
Static 176 6 544
Bad Light 23 0 189
Good Light 213 14 575

Per-frame attributes

Total Frames 203653 5316 1375200
Occupancy Low 44% 24% 29%
Occupancy Mid 53% 54% 68%
Occupancy High 3% 22% 3%

Table B: Source-domain (MOTSynth) results before and after fine-tuning on target-domain (MOT17).
We report the difference in performance in brackets.

MOTSynth HOTA↑ IDF1↑ MOTA↑ DetA↑ AssA↑
Trained on MOTSynth (Tab. 1)

MOTRv2-MS 52.4 56.6 61.9 56.4 49.0
PASTA 53.0 57.6 62.0 56.2 50.4

Subsequently trained on MOT17

MOTRv2-MS 48.1 (-4.3) 56.3 (-0.3) 60.8 (-1.1) 50.7 (-5.7) 46.2 (-2.8)
PASTA 49.8 (-3.2) 57.4 (-0.2) 61.8 (-0.2) 52.3 (-3.9) 48.0 (-2.4)

outperforms the standard one across all metrics, demonstrating the effectiveness of the modular
training in mitigating catastrophic forgetting. Indeed, the LoRA [16] modules act as a regularizer that
mitigates forgetting of the source-domain [4].

E Additional ablation studies

To further support our claim on leveraging all modules in a zero-shot scenario, we conduct an
additional ablation study on the test split of PersonPath22. As shown in Tab. C, this test confirms
that retaining knowledge from modules not directly related to the specific scenario is beneficial when
dealing with domain shifts. Specifically, our selection strategy outperforms the unweighted average
by empirically assigning a weight ρ = 0.8 to the selected modules and ρ = 0.2 to the others.

Comparison with tracking-by-detection. To comprehensively evaluate our method, we herein
test ByteTrack and other tracking-by-detection methods in a zero-shot setting from MOT17 to
PersonPath22. We report the results on PersonPath22 in Tab. D. Results indicate that PASTA
leads to remarkable improvements compared to the other query-based end-to-end approach (i.e.,
MOTRv2 [63]), even though they are both outperformed by the tracking-by-detection methods (such
as ByteTrack [61]). To be more comprehensive, PASTA remains competitive in terms of association
performance (IDF1), but it yields weaker detection capabilities. Such a trend does not surprise us and
is in line with what occurs in the more standard evaluation, where fine-tuning on the target dataset is
allowed. Indeed, tracking-by-detection approaches are generally more robust than those based on
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Table C: Ablation study on different module aggregation strategies on PersonPath22 test set in
zero-shot.

PersonPath22 MOTA↑ IDF1↑ FP↓ FN↓ IDSW↓
Sum (only selected) 0.91 0.64 – – –
Avg. (only selected) 49.6 53.6 18 211 105 611 6321
Weighted avg. (all) 50.0 53.8 17 786 105 454 6037

Table D: Comparison with tracking-by-detection approaches in a zero-shot setting from MOT17 to
PersonPath22.

Setting IDF1↑ MOTA↑ FP↓ FN↓ IDSW↓
ByteTrack fine-tuned on PP22 66.8 75.4 17 214 40 902 5931

ByteTrack zero-shot 56.2 55.9 3307 106 892 3962
OC-SORT zero-shot 55.6 59.9 3254 94 786 5786
SORT zero-shot 48.5 57.4 40 173 56 003 14 060

MOTRv2-MS zero-shot 43.9 51.5 8304 119 391 5342
PASTA zero-shot 46.1 54.6 7895 114 620 4702

end-to-end learning, so much so that it is an established practice to present the results in separate
parts of a table [12, 58, 63], to deliver an apple-to-apple comparison.

In a zero-shot setting, we conclude that existing tracking-by-detection trackers are more robust to
domain shifts. In these approaches, the only component potentially subject to shifts is the detector
(e.g., YOLOX [14]). Instead, the motion model (e.g., Kalman Filter [19]) and the association
strategy [3, 61] are almost parameter-free procedures that are less affected by domain shifts for
construction, as their design reflects strong inductive biases about human motion. For such a reason, it
is our belief that the problem of domain shift in Multiple Object Tracking (MOT) should be primarily
addressed in parametric approaches such as deep neural networks. For this reason, our research
question focuses on query-based trackers (e.g., MOTRv2) that learn entirely from data. Our final goal
is to enhance these trackers, as their end-to-end nature results can lead to challenges during domain
shifts.

ByteTrack thresholds. In Tab. 1, we evaluated ByteTrack on MOTSynth using the default input-
parameters provided in the public ByteTrack repository, specifically a minimum confidence score
(min_score) of 0.1 and a track threshold (track_thresh) of 0.6. In Tab. E, we present the results
for different values of these thresholds. The results are close, with a slight improvement when
reducing the track_thresh to 0.3 or 0.4, while min_score of 0.1 remains optimal.

F On computational costs

Memory efficiency. We compare the GPU memory of full fine-tuning versus our approach on the
MOTSynth dataset. Our method reduces training GPU memory requirements from 13GB to 8.25GB
(for a batch size of 1), a reduction of over 35%. This significant decrease is due to the lower number
of parameters updated by the optimizer: 42M parameters for standard fine-tuning versus 15M for our
PEFT technique, as reported in Tab. 1.

Inference speed. Additionally, our approach does not add any overhead during inference, aside
from weight merging, which is negligible for stationary attributes, compared to MOTRv2, which
maintains a speed of 6.9 FPS on a 2080Ti GPU.

Storage efficiency. Using PEFT techniques significantly reduces storage needs. Without these
techniques, each attribute would require a fully fine-tuned model, which poses several challenges,
especially in memory constraints [16, 25]. Firstly, storing a separate model for each attribute is
highly storage-intensive. For instance, a PASTA module is approximately 5MB, whereas the full
model exceeds 350MB. With 12 attributes, the total storage requirement for PASTA would be 410MB
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Table E: ByteTrack thresholds sensitivity analysis on MOTSynth.

Score Threshold HOTA↑ IDF1↑ MOTA↑ DetA↑ AssA↑

ByteTrack

0.1 0.2 45.9 56.4 61.9 51.1 41.6
0.1 0.3 46.0 56.5 62.1 51.1 41.7
0.1 0.4 45.9 56.6 62.2 50.9 41.8
0.05 0.6 43.0 54.4 54.5 45.9 40.9
0.1 0.6 45.7 56.4 61.8 50.1 41.9
0.2 0.6 45.6 56.3 61.5 49.8 41.9
0.1 0.7 45.0 55.8 60.3 48.7 41.8

PASTA (Ours) - - 53.0 57.6 62.0 56.2 50.4

(350MB + 12 x 5MB). In contrast, storing 12 fully fine-tuned models would require around 4.2GB
(12 x 350MB), representing a tenfold increase in storage needs. Additionally, adapting an entire
model to each specific condition is more time-consuming than using LoRA, as it involves optimizing
a more significant number of parameters. This adaptation process must be repeated for each attribute,
making it both impractical and costly. Moreover, fully fine-tuning a transformer-based architecture
demands more data than a parameter-efficient approach.

G Limitations

One limitation of our approach is the reliance on an expert router, which requires manual data
annotation or intervention by an external domain expert. This process can be resource-intensive and
may not scale well for larger datasets or diverse scenarios. Future work may explore the development
of automatic routing techniques, which could significantly improve scalability, performance, and ease
of deployment in real-world applications by reducing the dependency on manual annotations.

H Societal impacts

Positive Impacts. Enhanced security and surveillance is one of the key benefits of this work.
Improved accuracy and robustness in tracking can lead to better crime prevention, more efficient law
enforcement, and increased public safety. Additionally, operational efficiency is another positive
impact, where various sectors, including transportation, retail, and urban planning, can benefit
from optimized operations and resource allocation. Moreover, customization and adaptability are
enhanced by tailoring modules for specific scenarios, increasing versatility in applications ranging
from healthcare to sports analytics.

Negative Impacts. However, there are also potential negative impacts to consider. Privacy concerns
arise from increased tracking capabilities, which may lead to unauthorized surveillance and privacy
infringement. Bias and fairness are also issues, as biased training data can perpetuate existing biases,
leading to unfair treatment of certain groups.

While the modular approach presents significant advancements, it is crucial to address these societal
impacts through careful design and transparent policies.

18


	Introduction
	Related works
	Preliminaries
	Method
	Experiments
	Datasets
	Experimental setting
	Implementation details
	Performance in the in-domain setting
	Performance in the out-of-domain setting

	Ablation studies
	Conclusions
	Extracting task vectors from scale & shift layers
	Dataset licenses
	Dataset statistics
	Forgetting on source dataset
	Additional ablation studies
	On computational costs
	Limitations
	Societal impacts

