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Abstract

With the emergence of Transformers and Vision-Language Models (VLMs) such as
CLIP, large pre-trained models have become a common strategy to enhance performance
in Continual Learning scenarios. This led to the development of numerous prompting
strategies to effectively fine-tune transformer-based models without succumbing to catas-
trophic forgetting. However, these methods struggle to specialize the model on domains
significantly deviating from the pre-training and preserving its zero-shot capabilities.
In this work, we propose Continual Generative training for Incremental prompt-
Learning, a novel approach to mitigate forgetting while adapting a VLM, which ex-
ploits generative replay to align prompts to tasks. We also introduce a new metric to
evaluate zero-shot capabilities within CL benchmarks. Through extensive experiments
on different domains, we demonstrate the effectiveness of our framework in adapting
to new tasks while improving zero-shot capabilities. Further analysis reveals that our
approach can bridge the gap with joint prompt tuning. The codebase is available at
https://github.com/aimagelab/mammoth.

1 Introduction

In real-world scenarios, data is not always readily available but arrives gradually and sequen-
tially. Because of this, Continual Learning (CL) is becoming increasingly popular [41] as
it mimics a production environment. The primary challenge in developing a neural network
capable of continuously learning is the catastrophic forgetting [27] phenomenon, which de-
scribes the tendency of the model to replace previously acquired knowledge with that of
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new data, becoming less proficient in tasks it has encountered in the past. With the advent
of Transformers [8, 39] and Large Vision-Language Models (VLMs) [16, 33], the trend in
Computer Vision is moving towards prompt learning [17, 29, 49, 50] and parameter efficient
tuning [15], allowing the exploitation of available pre-trained models. Among this category
of methods, the most widespread approach is that of soft prompts, in which a few learnable
vectors are employed to adapt the model. For instance, CoOp [50] learns a context prompt,
which is concatenated to the textual name of the class and fed to the CLIP [33] text encoder.
Similarly, VPT [17] learns a visual prompt for each task, which is concatenated at each layer
of a Vision Transformer (ViT) [8] pre-trained on ImageNet. Finally, CoCoOp [49] extends
CoOp by conditioning the prompts on the input image.

One key capability of Vision-Language Models is to perform zero-shot classification
on unseen classes. This becomes crucial in a Continual Learning scenario, where such
ability is not affected by Catastrophic Forgetting. Thus, improving upon the zero-shot
performance of VLMs while learning in a continuous fashion presents a non-trivial chal-
lenge. Current prompt-based state-of-the-art approaches devise a learnable prompt pool
and a query function to map a given image embedding to its corresponding key within the
pool [18, 37, 42, 43, 44]. However, when exploiting a VLM as the backbone, the query-
key matching strategy privileges prompts for already seen classes, thus failing to generalize
to unseen ones. Notably, only a few approaches [42, 46, 48] can perform zero-shot clas-
sification after the adaptation phase; however, they still exhibit limited improvement over
CLIP. In this work, we propose a new parameter-efficient CL approach that addresses such
a shortcoming. Specifically, we fine-tune CLIP on the available data while also transferring
knowledge to future tasks, thus extending the performance of the frozen backbone.

Inspired by CoOp [50], we propose to learn class-specific prompts and keep the model’s
visual and text encoders frozen. This technique allows the model to adapt to new do-
mains while preserving CLIP’s zero-shot capabilities. Indeed, we employ a hybrid approach
that leverages hand-crafted prompts (“a photo of a <CLS>”) for unseen classes and
learned prompts for previously seen classes. However, as we show in Sec. 5, prompt learning
alone is not enough to overcome the challenges of a CL scenario and cannot compete with
current state-of-the-art CL methods. In this respect, we bridge the gap with joint training
by exploiting generative replay. Unlike standard rehearsal methods [3, 4, 34], which store
a subset of samples in a memory buffer, we eliminate the buffer and employ a generative
model to learn the underlying distribution of input data. This approach offers two significant
advantages: i) having access to the distributions of the past features, rather than just a subset
of the input data and ii) ensuring data anonymity, thus meeting privacy constraints over data.

Moreover, instead of generating images like previous generative-replay methods [10, 36],
we directly model the distribution of the latent representation of the data. As our framework
only tunes prompts for CLIP’s text encoder, the visual embeddings of images do not change
over the continual training phase. Thus, we can avoid generating images. Moreover, mod-
elling the latent space instead of the input one dramatically improves the generative models’
computational requirements given the lower dimensionality of the latent representations w.r.t.
raw images. Specifically, we adopt Variational Autoencoders (VAEs) [21] to model the vi-
sual embeddings. In Sec. 6, we compare various generative approaches, along with different
prompt-learning techniques, to validate our choices.

We evaluate our framework, called Continual Generative training for Incremental
prompt-Learning (CGIL), on various standard class-incremental CL benchmarks, show-
ing state-of-the-art performance even on domains where zero-shot CLIP fails. Indeed, it
overcomes the previous best performer by a wide margin (+11% on average). Inspired
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by [46, 48], we devise an additional metric to current CL benchmarks that measures zero-
shot performance on future tasks. We evaluate in this setting all competitors with zero-shot
capabilities (i.e., the ones adopting a VLM), showing the superiority of our prompting strat-
egy. We remark on the following contributions:

* We propose CGIL, a CL framework for adapting a VLM to a CL scenario that lever-
ages prompt-learning techniques and a generative replay strategy based on Variational
Autoencoders.

* We devise a new metric for CL benchmarks that measures zero-shot performance on
future tasks.

» Through extensive experiments, we demonstrate the validity of our approach, achiev-
ing state-of-the-art performance in the common class incremental scenario and over
future evaluation.

2 Related Works

Continual Learning (CL) methods are designed to tackle the issue of catastrophic forget-
ting [27], which prevents the continuous transfer of previously acquired knowledge when
data comes as a stream. Traditional CL approaches can be broadly classified in three main
categories: i) regularization techniques [22, 24] prevent the most important parameters from
drifting too far from the optimum; ii) architectural-based method allocate specific sets of
parameters for each incremental task [26, 35]; iii) rehearsal-based methods adopt a small
memory buffer to store past exemplars that are used for later replay [2, 3, 4, 30, 32, 34]. At
the cost of bending the rules of continual learning, the latter models have been established
as the state of the art when continuously training from scratch.

Recently, the advent of (large) pre-trained models based on the Vision Transformer (ViT)
architecture [8, 33] has changed this paradigm, fostering the emergence of buffer-free alter-
natives [28, 37, 43, 44, 47] that can achieve minimal forgetting without compromising pri-
vacy. These approaches are designed to tackle class-incremental learning [38], whose goal
is to continuously expand the set of recognizable classes with each incoming task.

While the class-incremental scenario is typically regarded as the most difficult for CL [1,
9, 38], it does not take into account the potential zero-shot capabilities of Visual Language
Models (VLMs). In particular, recent works have shown that it is possible to tune VLMs
while maintaining — or even improving — their zero-shot capabilities for a single task [5, 19,
45], or multiple tasks [46, 48]. Similarly to the latter, we aim to encourage the continuous
adaptation of a VLM to the incoming data without neglecting its zero-shot capabilities.

3 Preliminaries

Contrastive Language-Image Pre-Training (CLIP). We employ CLIP [33] as our VLM,
which is composed of a visual encoder E,;(+) and a text encoder E; (). These encoders are
trained on image-text pairs by aligning their latent representations via a contrastive objec-
tive. To use CLIP for classification, the input image x is fed to the visual encoder, yielding
the visual representation z,;; = Ey;s(x). In parallel, different text prompts are crafted by

embedding every class label (e.g., “cat”, “car”) into a template such as “a photo of a
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<CLS>". These prompts are tokenized and fed to the text encoder, obtaining a text repre-
sentation z! , for each class y'. Finally, the posterior probabilities of each class are computed
as the cosine similarity (noted as (-,-)) between their respective text representations and the
visual representation. Formally:

exp((2hy 2vis)/ T) |
[hYl J ’ M
Zj:l exP(<thtaZviS>/T)

p(y'Ix) =

where 7 is the temperature parameter fixed by CLIP and ) represents the set of classes.

Prompt-learning. With prompt-learning, it is possible to fine-tune large models (e.g., VLMs)
efficiently and with reduced computational cost. Among these methods, CoOp [50] stands
out as particularly effective. In a nutshell, CoOp learns context vectors V that, when concate-
nated before the label token [CLS], construct the prompt for the CLIP text encoder. These
context vectors are learned through gradient descent, with the standard cross-entropy objec-
tive applied to the similarity scores of the different classes.

4 Method

Problem setting. In Continual Learning (CL), a deep model f(-;0) parametrized by 0 is
presented with a sequence of tasks 7; with i := {1,...,T}, where T denotes the number of
tasks. Each ¢-th task provides N, data entries, composing the task dataset D, := {x(”) ,y(") }f?v’zl
with label y) € ). Importantly, each task relies on a set of classes disjoint from others such
that J;NY; =0 if i # j. The objective of CL is to minimize the empirical risk on all tasks:

T
Lo = ZE(XJ)N'E [L£(f(x:0),y)], 2
i=1

14

where L is the loss function (e.g., the cross entropy for classification). Since the model
observes one task at a time, tailored strategies are required to prevent catastrophic forgetting.

4.1 Continual Generative training for Incremental prompt-Learning

In Fig. 1, we present Continual Generative training for Incremental prompt-Learning
(CGIL), which comprises two main phases. First, we extract the image embeddings of all
images within the current task with the CLIP Visual Encoder. With such features, we fit
the distribution of the latent representation for each class with a VAE. In the second phase,
inspired by [47] and [50], we learn the prompts for CLIP’s text encoder using feature vectors
sampled by our VAEs. These two phases are repeated at each task to improve previously
learned prompts with knowledge from subsequent tasks.

Learning the Distributions of Latent Representations. In the first phase of our approach,
we aim to learn the underlying distribution of the latent representation of each class. We do
so by extracting all the visual features for each image in the current task. Formally, given
the samples D;, where ¢ is the current task with the label set );, we obtain the visual features
Zvis = Eyis(x), Vx € D,. Subsequently, we fit |);| VAEs (i.e., the number of classes within
the current task) to learn the distribution of each class ¢ € };. The objective function for
the VAE:s is the standard ELBO. Since we work solely in the latent space, we can discard
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Figure 1: Training of the generative models (left) and prompt alignment (right). At each task
t, we train a generative model (i.e., VAE) for each class C; in the task. While the decoders
are stored, the encoders can be discarded after train. In the second phase, we perform prompt
alignment between the features sampled from all the stored decoders up to task 7 and the text
features of the learnable prompts Vi and V.

the visual encoder E,;; once we extract the visual feature for all samples. This approach
significantly reduces our method’s computational costs. Once the VAEs are trained, we store
their decoders and use them for each alignment phase.

Prompts Alignment. In the second phase, we build a synthetic dataset by generating fea-
ture vectors through all stored decoders. We then perform prompt tuning only on synthetic
data by modeling the context words with continuous vectors. Specifically, we train one
class-specific context V to capture fine-grained details regarding the classes and a shared
Multi-Layer Perceptron (MLP) to recover cross-domain knowledge. The latter processes the
embedding z;,, related to the hand-crafted prompt “a photo of a <CLS>". The prompt
t. for the class ¢ that we feed the text encoder E;y; is:

te = [Vg] [V] [CLS], 3)
where Vg =MLP(E,4(“a photo of a <CLS>")). 4)

The posterior probability of the class c is obtained as in Eq. (1), using the text embeddings
obtained with our prompts z5,, = Eyx (7). Since the visual embeddings are not obtained
through the CLIP visual encoder but directly from the generated featured dataset, we avoid
carrying out expensive forward steps through such an encoder. Both V and Vj; are trained
via gradient descent on synthetic data of all seen tasks. Thus, previously learned contexts
are further fine-tuned, incorporating knowledge from subsequent tasks without incurring
forgetting. During inference, we feed the image through the visual encoder and compute the
posterior probability for each class.

Zero-shot Inference. When dealing with unseen classes (i.e., zero-shot classification) can
exploit the learned contexts for the classes the model has already seen. At the same time,
we can still use handcrafted prompts (e.g., “a photo of a <CLS>") to classify unseen
classes. This approach allows us to i) preserve the zero-shot capabilities of CLIP while
adapting to the classes that arrive sequentially and ii) exploit past knowledge to exclude
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Model Imagenet-R  Cars-196 CUB-200 EuroSAT ISIC  Avg.
Zero-shot CLIP [33] 81.95 64.99 50.52 53.32 26.59 55.47
LwF T [24] 19.09 23.24 16.73 25.13 33.06 23.45
GDumb * [32] 44.28 28.74 61.34 90.99 61.64 57.40
DER++ T [3] 56.66 53.66 74.62 93.08 65.68 68.74
L2P [44] 66.49 38.18 62.21 46.34 47.13  52.07
DualPrompt [43] 68.50 40.14 66.00 71.39 49.99 59.20
CODA-Prompt [37] 75.45 31.99 67.30 63.12 44.87 56.55
AttriCLIP [42] 87.39 75.63 58.28 72.33 28.26 64.38
SLCA T [47] 77.00 67.73 84.71 88.69 59.19 75.46
MoE Adapters [46] 90.67 77.76 64.98 80.56 34.52  69.70
CGIL 89.42 89.27 83.12 96.17 73.03 86.20

Table 1: The Final Avg. Accuracy on the tested benchmarks. ™ denotes methods that fine-
tune the whole model, while other methods apply parameter-efficient techniques.

already seen classes from the classification problem, thus reducing interference and avoiding
misclassification.

S Experiments

Datasets. We evaluate our approach across a wide range of datasets with different levels of
similarity w.z.t. the ImageNet pre-train [7, 31]. In particular, we test on:

» Split Imagenet-R [13], is a general-knowledge dataset frequently adopted in recent CL
benchmarks [37, 43, 44, 47], with 200 classes split across 10 tasks.

o Split Cars-196 [23] and Split CUB-200 [40], are fine-grained classification datasets
regarding car models and bird species, respectively. For both scenarios, the classes are
split into 10 tasks.

» Split EuroSAT [11, 12], which features RGB satellite images and defines a land cover
classification problem consisting of 5 binary tasks.

 Split ISIC [6], which includes images depicting 6 skin diseases equally split into 3
tasks.

Metrics. We chose the more challenging scenario of class incremental learning [38] (CIL),
where there is no knowledge of the task to which data belong during evaluation. To quantita-
tively assess our model’s performance in this setting, we report the average accuracy of each
task, computed after the end of the last training phase, that is, the Final Average Accuracy
(FAA), also called Last Accuracy. Additionally, we adapt the Transfer metric from [46, 48],
originally used across datasets, to a class incremental training regime to evaluate the zero-
shot performance on future tasks. Specifically, let A! be the CIL accuracy on the i-th task
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CI-Transfer Imagenet-R  Cars-196 CUB-200 EuroSAT ISIC  Avg.

Zero-shot CLIP [33] 82.14 66.16 50.86 55.00 22.42  55.32
AttriCLIP [42] 85.75 73.98 54.07 59.69 24.14 59.53
MoE Adapters [46] 88.25 75.82 61.73 55.77 21.06 60.53
CGIL 86.71 78.80 66.34 71.52 48.18 70.31

Table 2: The Class Incremental Transfer on the tested benchmarks. Only methods with zero-
shot capabilities (i.e., with CLIP as a backbone) could be tested.

after being trained until task 7, the Class Incremental Transfer is defined as:

(IS | i :
Cl-Transfer = —— —_— Al . 5)
r—1=\T~-t.57,

Implementation Details. We employ Adam optimizer [20] with a learning rate of 0.0002
for 500 epochs to train our VAEs. Each VAE consists of an encoder and a decoder, com-
prising only 3 fully connected layers interleaved with LeakyReL U activations. The hidden
and latent sizes are 512 and 256, respectively. During the prompt-learning phase, we use
the Adam optimizer with a learning rate of 0.03, and the synthetic features generated for
alignment are roughly 15K per class, mixed together and split into batches of size 128. We
employ CLIP with the ViT-L/14 backbone for each model. Finally, all results reported are
the average across 3 runs with different seeds, changing the composition of tasks. The stan-
dard deviations of these experiments are reported in the Supplementary Material, along with
more technical details of the experiments.

Comparison Methods. We benchmark our model against several state-of-the-art prompt-
tuning approaches, including L2P [44], DualPrompt [43], CODA-Prompt [37], and Attri-
CLIP [42]. Additionally, we assess models that fine-tune the entire architecture, namely
LwF [24], GDumb [32], DER++ [3], and SLCA [47]. In addition to such methods, we
integrate MoE Adapters [46] into our framework, a parameter-efficient approach originally
designed to prevent zero-shot accuracy degradation across datasets. To ensure a fair compar-
ison, we train all competing models, tuning their hyperparameters for optimal performance.
We include the performance of zero-shot CLIP on our datasets as a baseline to emphasize
the efficacy of prompt tuning methods over the frozen CLIP backbone. Additionally, Attri-
CLIP, Moe Adapters, and our CGIL are also evaluated on future tasks, measuring how their
zero-shot capabilities are affected by incremental training.

5.1 Comparison with the State of the Art

In Tab. 1, we report the CIL final accuracies for all evaluated competitors across each bench-
mark. The last column shows the average of the performance of each method. Despite
Zero-shot CLIP’s impressive performance on Split Imagenet-R and Split Cars-196, it fails
in other domains, particularly in the medical field. Consequently, competitors that rely on
CLIP as their backbone are heavily influenced by this limitation and exhibit a similar pattern.
On the other hand, CGIL successfully addresses these CLIP-related issues, delivering top-
tier performance in all scenarios. Considering average performance, our framework stands
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Imagenet-R  Cars-196 CUB-200 EuroSAT ISIC  Avg.

CoOp (Joint) 89.24 89.89 82.52 96.25 73.57 86.29
CoOp (Fine-tune) 84.94 68.61 59.84 79.27 37.08 65.95
CGIL 89.42 89.27 83.12 96.17 73.03 86.20
Different generative approaches
Multinomial Gaussian 83.89 82.59 80.06 85.70 51.89 76.83
Mixture of Gaussians 88.54 88.82 82.10 93.04 62.42 82.98
Diffusion Models 89.28 90.14 83.48 95.73 68.99 85.52
Variational Autoencoders (CGIL) 89.42 89.27 83.12 96.17 73.03 86.20
Different prompt-learning techniques
Class-specific Context (w/o MLP) 89.09 88.96 83.06 95.59 7221 85.78
Generated Context (only MLP) 89.41 88.91 82.82 95.69 70.79 85.52
Unified Context 89.02 88.08 81.50 95.47 70.18 84.85
Class-specific + Generated Contexts (CGIL) 89.42 89.27 83.12 96.17 73.03  86.20

Table 3: Ablative studies on CGIL regarding the generative models and the prompt-learning
techniques. Performance is measured in terms of Final Average Accuracy.

out significantly, outperforming all other methods. Notably, it achieves a substantial lead
(+11) over the best competitor, namely SLCA [47], while other prompt-based competitors
fall behind.

Zero-shot performance. Tab. 2 displays the average CIL accuracies on unseen tasks, as
measured by the CI-Transfer metric (Eq. (5)). This metric serves as an indicator of zero-
shot capabilities. Thus, only methods with a VLM as their backbone could be evaluated.
Nevertheless, similar patterns emerge, with CLIP and other competitors excelling in Split
Imagenet-R and Split Cars-196 but struggling with other datasets. CGIL exhibits remarkable
ability in leveraging both the zero-shot expertise of CLIP and its knowledge from previously
learned tasks, achieving superior performance in nearly all benchmarks.

6 Analysis

To better validate the effectiveness of CGIL and its architectural design, we report additional
experiments in Tab. 3. We evaluated vanilla CoOp (specifically, their class-specific version)
under two distinct benchmarks: one trained jointly, i.e. without partitioning the dataset into
tasks (Joint), and the other trained in the conventional CIL scenario (Fine-tune). For the
latter, we implemented a minor adjustment: after each task, the learned prompts are frozen.
This strategy, also employed by [37], helps prevent forgetting. Conversely, training all con-
texts in subsequent tasks can overwrite previous knowledge by altering learned prompts. The
insights derived from the outcomes of these two baselines highlight the proficiency of CGIL
in effectively bridging the gap between fine-tuning and joint training in prompt learning, as
our method matches the performance of the joint approach. As other ablation studies indi-
cate, this success is primarily attributed to the generative replay of latent features. On the
other hand, the various prompting methods tested slightly affect the performance.

Different generative approaches. Along with Variational Autoencoders, we experimented
with various generative models to identify the one that best complements our method. The
most straightforward approach involves fitting a multivariate Gaussian distribution for each
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class, which can be used for later sampling. As indicated in Tab. 3, this approach alone
achieves state-of-the-art results (76.83 vs. 75.46 on Avg.), underscoring the effectiveness of
our methodology regardless of the generator. However, exploiting a more powerful genera-
tive model considerably improves the effectiveness of the alignment procedure, demonstrat-
ing that the quality of the generated data is crucial. We first experimented with Mixture of
Gaussians (MoGQG), fitted with expectation-maximization until convergence, which can better
capture intra-feature relationships by combining multiple multivariate Gaussians. Then, we
investigated Variational Autoencoders (VAEs) (CGIL) and Denoising Diffusion Probabilistic
Models (DDPMs) [14], both saturating the required performance in generation. We train the
DDPMs with the same hyper-parameters as VAEs, described in Sec. 5. Among the two, we
stick to VAESs due to their faster training and reduced number of parameters w.z¢. DDPMs.

Different prompt-learning techniques. Our context comprises a class-specific context
and a generated context; in the lower section of Tab. 3, we present the results with different
choices. Specifically we evaluate: i) just one class-specific context, as in CoOp Fine-tune; ii)
just one MLP generated context; iii) the unified-context variant of CoOp, i.e., using multiple
shared contexts. We also varied the number of contexts for each baseline. Interestingly,
while the unified context benefited from this modification, the performance for the first two
strategies did not improve with an increased number of contexts. Thus, we report only the
results with a single context. The outcomes of these experiments fall shortly behind CGIL,
showcasing that the main contributors to CGIL’s performance are the generative rehearsal
and the alignment phase. This contributions are highlighted by the difference between the
CoOp fine-tune and Class-specific Context lines in Tab. 3, as they share the same prompting
strategy.

6.1 Discussion and Limitations

On the memory and computational costs. Despite our VAEs being relatively lightweight,
with only half a million parameters after the encoders are discarded, CGIL may encounter
memory constraints if the number of classes continues to grow, potentially restricting its
applicability in scenarios with an extreme amount of classes. Compared with a standard
rehearsal approach, the memory requirement of one decoder is comparable to a buffer of 14
RGB images of size 224 x 224 (i.e., ~2MB). However, we note that these decoders are only
needed for the training phase, while during inference, only the CLIP visual encoder and the
embeddings zj,, of our prompts are required. Thus, the computational cost for inference is
equivalent to a single pass through the visual encoder plus a matrix multiplication to obtain
the similarity scores. This represents a significant advancement over other CL-prompting
methods. Indeed, L2P, DualPrompt, and CODA-Prompt execute the forward pass on the
image twice, while AttriCLIP computes both visual and textual embeddings during test time.
When considering the computational costs of training, our VAEs are notably lightweight,
enabling the learning of latent embedding distribution to be remarkably swift, even without
the need for a GPU. The alignment phase for prompt learning presents a higher level of
complexity, as it performs gradient descent through the CLIP text encoder. Nonetheless,
the duration of this phase can be controlled by adjusting the size of the synthetic dataset
generated, thereby permitting flexible utilization and accommodation of time constraints.

Online CL Setting. We would like to highlight that CGIL may be classified under the cat-
egory of Online CL methods [1, 25], as training images are fed only once to the visual
encoder. While this requires temporarily storing the feature vectors of all samples from the
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current task, the burden incurred is limited as the size of the features is significantly smaller
than that of the images. These embeddings are employed to train our generative models and
are subsequently discarded.

7 Conclusions

In this work, we introduce a novel framework, Continual Generative training for Incre-
mental prompt-Learning, which allows the adaptation of Vision-Language Models to new
tasks without incurring forgetting. Our model employs Variational Autoencoders to learn the
latent distributions of input images, which enables the generation of synthetic latent embed-
dings. Such data is exploited to fine-tune our backbone efficiently through prompt learning.
Specifically, CGIL learns textual contexts, keeping the backbone parameters frozen, thereby
preserving the zero-shot capabilities of CLIP.

Our approach significantly outperforms previous state-of-the-art CL methods when tested
across a broad spectrum of benchmarks in various domains. By introducing a new metric,
the Class Incremental Transfer, we evaluate zero-shot performance on future tasks during
training, demonstrating that our framework is the most effective at leveraging past knowl-
edge to predict unseen classes. Further analysis validates our architectural choices and shows
that CGIL bridges the gap with the performance of prompts learned jointly.
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